Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Tatsuki Itoh is active.

Publication


Featured researches published by Tatsuki Itoh.


Neurological Research | 2009

The relationship between SDF-1α/CXCR4 and neural stem cells appearing in damaged area after traumatic brain injury in rats

Tatsuki Itoh; Takao Satou; Hiroyuki Ishida; Shozo Nishida; Masahiro Tsubaki; Shigeo Hashimoto; Hiroyuki Ito

Abstract Objective: The actual relationship between neural stem cells and SDF-1α/CXCR4 after brain injury has not yet been elucidated, although recent studies have speculated that stromal cell-derived factor-1α (SDF-1α) and its receptor, CXCR4, could contribute to neural stem cells migration after brain injury. In the present study, the temporal relationship between neural stem cells (NSCs) and SDF-1α/CXCR4 around a damaged area was investigated using a rat traumatic brain injury (TBI) model. Methods: We used molecular biology techniques and immunohistochemistry to investigate the relationship between SDF-1α/CXCR4 expression and NSCs existence around a damaged area after TBI in the rat brain. Results: SDF-1α mRNA expression and SDF-1α protein synthesis did not increase after TBI. However, SDF-1α leaked from the injured area and diffused into the cortex 1–3 days after TBI. Subsequently, the levels of CXCR4 mRNA expression and CXCR4 protein synthesis increased significantly. Many small cells with a nestin-positive cytoplasm and fibers also showed immunopositivity for both CXCR4 and SOX-2, but not for GFAP, 3–7 days after TBI. Moreover, a proportion of the CXCR4-positive cells and fibers also showed immunostaining for neurofilaments. Discussion: These results suggest that the leaked SDF-1α attracted CXCR4-positive NSCs as well as elongated nerve fibers. It is considered that the SDF-1α/CXCR4 system in the brain contributes to neural stem cells appearance and maturation after TBI. Therefore, exploitation of the SDF-1α/CXCR4 system around a damaged area may improve the brain dysfunction after TBI.


Journal of Experimental & Clinical Cancer Research | 2010

Reduction of lung metastasis, cell invasion, and adhesion in mouse melanoma by statin-induced blockade of the Rho/Rho-associated coiled-coil- containing protein kinase pathway

Yasuhiro Kidera; Masanobu Tsubaki; Yuzuru Yamazoe; Kaori Shoji; Haruyuki Nakamura; Mitsuhiko Ogaki; Takao Satou; Tatsuki Itoh; Misako Isozaki; Junichi Kaneko; Yoshihiro Tanimori; Masashi Yanae; Shozo Nishida

BackgroundMelanomas are highly malignant and have high metastatic potential; hence, there is a need for new therapeutic strategies to prevent cell metastasis. In the present study, we investigated whether statins inhibit tumor cell migration, invasion, adhesion, and metastasis in the B16BL6 mouse melanoma cell line.MethodsThe cytotoxicity of statins toward the B16BL6 cells were evaluated using a cell viability assay. As an experimental model, B16BL6 cells were intravenously injected into C57BL/6 mice. Cell migration and invasion were assessed using Boyden chamber assays. Cell adhesion analysis was performed using type I collagen-, type IV collagen-, fibronectin-, and laminin-coated plates. The mRNA levels, enzyme activities and protein levels of matrix metalloproteinases (MMPs) were determined using RT-PCR, activity assay kits, and Western blot analysis, respectively; the mRNA and protein levels of vary late antigens (VLAs) were also determined. The effects of statins on signal transduction molecules were determined by western blot analyses.ResultsWe found that statins significantly inhibited lung metastasis, cell migration, invasion, and adhesion at concentrations that did not have cytotoxic effects on B16BL6 cells. Statins also inhibited the mRNA expressions and enzymatic activities of matrix metalloproteinases (MMPs). Moreover, they suppressed the mRNA and protein expressions of integrin α2, integrin α4, and integrin α5 and decreased the membrane localization of Rho, and phosphorylated LIM kinase (LIMK) and myosin light chain (MLC).ConclusionsThe results indicated that statins suppressed the Rho/Rho-associated coiled-coil-containing protein kinase (ROCK) pathways, thereby inhibiting B16BL6 cell migration, invasion, adhesion, and metastasis. Furthermore, they markedly inhibited clinically evident metastasis. Thus, these findings suggest that statins have potential clinical applications for the treatment of tumor cell metastasis.


Neurological Research | 2009

Expression of amyloid precursor protein after rat traumatic brain injury.

Tatsuki Itoh; Takao Satou; Shozo Nishida; Masahiro Tsubaki; Shigeo Hashimoto; Hiroyuki Ito

Abstract Objective: Previous reports have demonstrated that some focal brain injuries increase amyloid precursor protein (APP) immunoreactivity in the region surrounding the injury in the cerebral cortex. However, the chronologic changes in APP expression have not been evaluated after traumatic brain injury (TBI). Methods: In this study, we immunohistochemically and biologically investigated chronologic changes in cellular sources and levels of APP production after rat TBI. Results: In the present report, we show that traumatic brain injury increased the expression of APP in the neuronal perikarya and in damaged dystrophic neurites from 1 to 90 days after injury. Moreover, 7 days after injury, some macrophages/microglia also were co-localized with APP, which was overproduced by the neuronal perikarya and APP-positive dystrophic neurites after injury and then APP were phagocytosed by macrophages/microglia during this phase. However, astroglia did not express APP immunopositivity after brain injury. Discussion: These results suggested that long-term overexpression of APP was confirmed by immunohistochemical and biologic technique after TBI. This may be related to the induction of Alzheimer type dementia and it is a very important risk factor for this disease.


Experimental Cell Research | 2009

Tamoxifen inhibits tumor cell invasion and metastasis in mouse melanoma through suppression of PKC/MEK/ERK and PKC/PI3K/Akt pathways.

Hiroshi Matsuoka; Masanobu Tsubaki; Yuzuru Yamazoe; Mitsuhiko Ogaki; Takao Satou; Tatsuki Itoh; Takashi Kusunoki; Shozo Nishida

In melanoma, several signaling pathways are constitutively activated. Among these, the protein kinase C (PKC) signaling pathways are activated through multiple signal transduction molecules and appear to play major roles in melanoma progression. Recently, it has been reported that tamoxifen, an anti-estrogen reagent, inhibits PKC signaling in estrogen-negative and estrogen-independent cancer cell lines. Thus, we investigated whether tamoxifen inhibited tumor cell invasion and metastasis in mouse melanoma cell line B16BL6. Tamoxifen significantly inhibited lung metastasis, cell migration, and invasion at concentrations that did not show anti-proliferative effects on B16BL6 cells. Tamoxifen also inhibited the mRNA expressions and protein activities of matrix metalloproteinases (MMPs). Furthermore, tamoxifen suppressed phosphorylated extracellular signal-regulated kinase 1/2 (ERK1/2) and Akt through the inhibition of PKCalpha and PKCdelta phosphorylation. However, other signal transduction factor, such as p38 mitogen-activated protein kinase (p38MAPK) was unaffected. The results indicate that tamoxifen suppresses the PKC/mitogen-activated protein kinase kinase (MEK)/ERK and PKC/phosphatidylinositol-3 kinase (PI3K)/Akt pathways, thereby inhibiting B16BL6 cell migration, invasion, and metastasis. Moreover, tamoxifen markedly inhibited not only developing but also clinically evident metastasis. These findings suggest that tamoxifen has potential clinical applications for the treatment of tumor cell metastasis.


Journal of Experimental & Clinical Cancer Research | 2011

Statin-induced apoptosis via the suppression of ERK1/2 and Akt activation by inhibition of the geranylgeranyl-pyrophosphate biosynthesis in glioblastoma

Masashi Yanae; Masanobu Tsubaki; Takao Satou; Tatsuki Itoh; Motohiro Imano; Yuzuru Yamazoe; Shozo Nishida

BackgroundStatins are inhibitors of 3-hydroxy-3-methylglutaryl-coenzyme A reductase, the rate-limiting enzyme in cholesterol synthesis. The inhibition of this key enzyme in the mevalonate pathway leads to suppression of cell proliferation and induction of apoptosis. However, the molecular mechanism of apoptosis induction by statins is not well understood in glioblastoma. In the present study, we attempted to elucidate the mechanism by which statins induce apoptosis in C6 glioma cells.MethodsThe cytotoxicity of statins toward the C6 glioma cells were evaluated using a cell viability assay. The enzyme activity of caspase-3 was determined using activity assay kits. The effects of statins on signal transduction molecules were determined by western blot analyses.ResultsWe found that statins inhibited cell proliferation and induced apoptosis in these cells. We also observed an increase in caspase-3 activity. The apoptosis induced by statins was not inhibited by the addition of farnesyl pyrophosphate, squalene, ubiquinone, and isopentenyladenine, but by geranylgeranyl-pyrophosphate (GGPP). Furthermore, statins decreased the levels of phosphorylated extracellular signal-regulated kinase 1/2 (ERK1/2) and Akt.ConclusionsThese results suggest that statins induce apoptosis when GGPP biosynthesis is inhibited and consequently decreases the level of phosphorylated ERK1/2 and Akt. The results of this study also indicate that statins could be used as anticancer agents in glioblastoma.


Journal of Experimental & Clinical Cancer Research | 2013

Activation of NF-κB by the RANKL/RANK system up-regulates snail and twist expressions and induces epithelial-to-mesenchymal transition in mammary tumor cell lines

Masanobu Tsubaki; Makiko Komai; Shin-ichiro Fujimoto; Tatsuki Itoh; Motohiro Imano; Kotaro Sakamoto; Hirotaka Shimaoka; Tomoya Takeda; Naoki Ogawa; Kenji Mashimo; Daiichiro Fujiwara; Junji Mukai; Katsuhiko Sakaguchi; Takao Satou; Shozo Nishida

BackgroundIncreased motility and invasiveness of cancer cells are reminiscent of the epithelial-mesenchymal transition (EMT), which occurs during cancer progression and metastasis. Recent studies have indicated the expression of receptor activator of nuclear factor-κB (RANK) in various solid tumors, including breast cancer. Although activation of the RANK ligand (RANKL)/RANK system promotes cell migration, metastasis, and anchorage-independent growth of tumor-initiating cells, it remains to be investigated if RANKL induces EMT in breast cancer cells. In this study, we investigated whether RANKL induces EMT in normal breast mammary epithelial cells and breast cancer cells, and the mechanism underlying such induction.MethodsExpression levels of vimentin, N-cadherin, E-cadherin, Snail, Slug, and Twist were examined by real-time polymerase chain reaction. Cell migration and invasion were assessed using Boyden chamber and invasion assays, respectively. The effects of RANKL on signal transduction molecules were determined by western blot analyses.ResultsWe found that stimulation by RANKL altered the cell morphology to the mesenchymal phenotype in normal breast epithelial and breast cancer cells. In addition, RANKL increased the expression levels of vimentin, N-cadherin, Snail, and Twist and decreased the expression of E-cadherin. We also found that RANKL activated nuclear factor-κB (NF-κB), but not extracellular signal-regulated kinase 1/2, Akt, mammalian target of rapamycin, c-Jun N-terminal kinase, and signal transducer and activator of transcription 3. Moreover, dimethyl fumarate, a NF-κB inhibitor, inhibited RANKL-induced EMT, cell migration, and invasion, and upregulated the expressions of Snail, Twist, vimentin, and N-cadherin.ConclusionsThe results indicate that RANKL induces EMT by activating the NF-κB pathway and enhancing Snail and Twist expression. These findings suggest that the RANKL/RANK system promotes tumor cell migration, invasion, and metastasis via the induction of EMT.


Neurological Research | 2007

Immature and mature neurons coexist among glial scars after rat traumatic brain injury

Tatsuki Itoh; Takao Satou; Shozo Nishida; Shigeo Hashimoto; Hiroyuki Ito

Abstract Objectives: Glial scars around a damaged area after brain injury inhibit neurite elongation from surviving neurons and axonal plasticity, and thus prevent neural network regeneration. However, the generation, differentiation and maturation of neural stem cells (NSCs) among glial scars after brain injury have not yet been reported. Methods: In the present study, we investigated the chronological relationship between gliosis and maturation of new neurons around a damaged area using a rat traumatic brain injury (TBI) model. Results: Between 1 and 7 days after injury, many nestin-positive cells were observed around the damaged area. Three days after injury, many small nestin-positive cells showed an astrocytic morphology. Between 1 and 30 days after injury, doublecortin (DCX)-positive cells were present around the damaged area. Three and 7 days after injury, a small number of nestin-positive cells were immunopositive for glial fibrillary acidic protein (GFAP). Seven days after injury, there were DCX-positive cells in the gliosis occurring in the lesion. Thirty days after injury, DCX-positive cells were observed near and among the glial scars and a small number of these cells were immunopositive for NeuN. Discussion: These results suggest that DCX-positive cells were present near and among the glial scars after brain injury, and that these cells changed from immature to mature neurons. It is considered that promotion of the maturation and differentiation of newly formed immature neurons near and among glial scars after injury may improve the brain dysfunction induced by glial scars after brain injury.


Toxicology and Applied Pharmacology | 2012

Reduction of metastasis, cell invasion, and adhesion in mouse osteosarcoma by YM529/ONO-5920-induced blockade of the Ras/MEK/ERK and Ras/PI3K/Akt pathway

Masanobu Tsubaki; Takao Satou; Tatsuki Itoh; Motohiro Imano; Mitsuhiko Ogaki; Masashi Yanae; Shozo Nishida

Osteosarcoma is one of the most common primary malignant bone tumors in children and adolescents. Some patients continue to have a poor prognosis, because of the metastatic disease. YM529/ONO-5920 is a nitrogen-containing bisphosphonate that has been used for the treatment of osteoporosis. YM529/ONO-5920 has recently been reported to induce apoptosis in various tumors including osteosarcoma. However, the mode of metastasis suppression in osteosarcoma by YM529/ONO-5920 is unclear. In the present study, we investigated whether YM529/ONO-5920 inhibited tumor cell migration, invasion, adhesion, or metastasis in the LM8 mouse osteosarcoma cell line. We found that YM529/ONO-5920 significantly inhibited metastasis, cell migration, invasion, and adhesion at concentrations that did not have antiproliferative effects on LM8 cells. YM529/ONO-5920 also inhibited the mRNA expression and protein activities of matrix metalloproteinases (MMPs). In addition, YM529/ONO-5920 suppressed phosphorylated extracellular signal-regulated kinase 1/2 (ERK1/2) and the serine/threonine protein kinase B (Akt) by the inhibition of Ras prenylation. Moreover, U0126, a mitogen-activated protein kinase kinase (MEK) 1/2 inhibitor, and LY294002, a phosphatidylinositol 3-kinase (PI3K) inhibitor, also inhibited LM8 cell migration, invasion, adhesion, and metastasis, as well as the mRNA expression and protein activities of MMP-1, MMP-2, MMP-9, and MT1-MMP. The results indicated that YM529/ONO-5920 suppressed the Ras/MEK/ERK and Ras/PI3K/Akt pathways, thereby inhibiting LM8 cell migration, invasion, adhesion, and metastasis. These findings suggest that YM529/ONO-5920 has potential clinical applications for the treatment of tumor cell metastasis in osteosarcoma.


Archives of Pharmacal Research | 2011

Mangiferin induces apoptosis by suppressing Bcl-xL and XIAP expressions and nuclear entry of NF-κB in HL-60 cells

Kaori Shoji; Masanobu Tsubaki; Yuzuru Yamazoe; Takao Satou; Tatsuki Itoh; Yasuhiro Kidera; Yoshihiro Tanimori; Masashi Yanae; Hideaki Matsuda; Atsushi Taga; Haruyuki Nakamura; Shozo Nishida

Mangiferin, 1,3,6,7-tetrahydroxyxanthone-C2-β-d-glucoside (C-glucosylxanthone), is a xanthone derivative that is widely distributed in higher plants. Recently, mangiferin was found to exhibit potential antitumor effects. However, the molecular mechanisms of this effect have not been elucidated. In the present study, we attempt to clarify the mechanism of mangiferin-induced apoptosis in the human acute myeloid leukemia cell line HL-60; mangiferin was found to induce apoptosis. We also observed a concurrent increase in caspase-3 activity and DNA fragmentation. Furthermore, on examining the survival signals expressed during apoptotic induction, we observed that mangiferin caused a remarkable decrease in the nuclear entry of NF-κB p65. However, there were no changes in the expression of other survival signals, such as extracellular signal-regulated kinase 1/2, protein kinase B, and p38 mitogenactivated protein kinase. In addition, mangiferin suppressed the expressions of Bcl-xL and XIAP; however, we did not note any changes in the levels of Bcl-2, Bax, and Bim. These results indicate that mangiferin induces apoptosis by suppressing NF-κB activation and expressions of Bcl-xL and XAIP. These findings suggest that mangiferin may be useful as an anticancer agent and can be used in combination therapy with other anticancer drugs for the treatment of acute myeloid leukemia.


Cytokine | 2011

Blockade of the Ras/MEK/ERK and Ras/PI3K/Akt pathways by statins reduces the expression of bFGF, HGF, and TGF-β as angiogenic factors in mouse osteosarcoma.

Masanobu Tsubaki; Yuzuru Yamazoe; Masashi Yanae; Takao Satou; Tatsuki Itoh; Junichi Kaneko; Yasuhiro Kidera; Kenzo Moriyama; Shozo Nishida

The tumor microenvironment plays a critical role in modulating malignant behavior and can dramatically influence cancer treatment strategies. We investigated whether statins inhibit the expression of vascular endothelial growth factor (VEGF), basic fibroblast growth factor (bFGF), hepatocyte growth factor (HGF), and transforming growth factor-β (TGF-β) mRNA in the mouse osteosarcoma cell line LM8. We found that statins significantly inhibited mRNA expressions of bFGF, HGF, and TGF-β, and bFGF, HGF, and TGF-β secretions at concentrations that did not have antiproliferative effects on LM8 cells, but had no effect on the mRNA expression and secretion of VEGF. The inhibition of bFGF, HGF, and TGF-β mRNA expression, and bFGF, HGF, TGF-β secretions was reversed when geranylgeranyl pyrophosphate (GGPP), an intermediate in the mevalonate pathway, was used in combination with statins. Furthermore, statins reduced the membrane localization of K-Ras, phosphorylated extracellular signal-regulated kinase 1/2 (ERK1/2), and phosphorylated Akt. Our research indicates that statins inhibit GGPP biosynthesis in the mevalonate pathway, and then inhibit signal transduction in the Ras/ERK and Ras/Akt pathways, thereby inhibiting bFGF, HGF, TGF-β expression in LM8 cells. These results suggest that statins are potentially useful as anti-angiogenic agents for the treatment of osteosarcoma.

Collaboration


Dive into the Tatsuki Itoh's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge