Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Tatsuo Aono is active.

Publication


Featured researches published by Tatsuo Aono.


Scientific Reports | 2012

Isotopic evidence of plutonium release into the environment from the Fukushima DNPP accident

Jian Zheng; Keiko Tagami; Yoshito Watanabe; Shigeo Uchida; Tatsuo Aono; Nobuyoshi Ishii; Satoshi Yoshida; Yoshihisa Kubota; Shoichi Fuma; Sadao Ihara

The Fukushima Daiichi nuclear power plant (DNPP) accident caused massive releases of radioactivity into the environment. The released highly volatile fission products, such as 129mTe, 131I, 134Cs, 136Cs and 137Cs were found to be widely distributed in Fukushima and its adjacent prefectures in eastern Japan. However, the release of non-volatile actinides, in particular, Pu isotopes remains uncertain almost one year after the accident. Here we report the isotopic evidence for the release of Pu into the atmosphere and deposition on the ground in northwest and south of the Fukushima DNPP in the 20–30 km zones. The high activity ratio of 241Pu/239+240Pu (> 100) from the Fukushima DNPP accident highlights the need for long-term 241Pu dose assessment, and the ingrowth of 241Am. The results are important for the estimation of reactor damage and have significant implication in the strategy of decontamination.


Scientific Reports | 2015

Southward spreading of the Fukushima-derived radiocesium across the Kuroshio Extension in the North Pacific

Yuichiro Kumamoto; Michio Aoyama; Yasunori Hamajima; Tatsuo Aono; Shinya Kouketsu; Akihiko Murata; Takeshi Kawano

The accident of the Fukushima Dai-ichi nuclear power plant in March 2011 released a large amount of radiocesium into the North Pacific Ocean. Vertical distributions of Fukushima-derived radiocesium were measured at stations along the 149°E meridian in the western North Pacific during the winter of 2012. In the subtropical region, to the south of the Kuroshio Extension, we found a subsurface radiocesium maximum at a depth of about 300 m. It is concluded that atmospheric-deposited radiocesium south of the Kuroshio Extension just after the accident had been transported not only eastward along with surface currents but also southward due to formation/subduction of subtropical mode waters within about 10 months after the accident. The total amount of decay-corrected 134Cs in the mode water was an estimated about 6 PBq corresponding to 10–60% of the total inventory of Fukushima-derived 134Cs in the North Pacific Ocean.


Science of The Total Environment | 2014

The impact of the Fukushima nuclear accident on marine biota: Retrospective assessment of the first year and perspectives

Jordi Vives i Battle; Tatsuo Aono; J.E. Brown; A. Hosseini; Jacqueline Garnier-Laplace; Tatiana G. Sazykina; Frits Steenhuisen; P. Strand

An international study under the United Nations Scientific Committee on the Effects of Atomic Radiation (UNSCEAR) was performed to assess radiological impact of the nuclear accident at the Fukushima-Daiichi Nuclear Power Station (FDNPS) on the marine environment. This work constitutes the first international assessment of this type, drawing upon methodologies that incorporate the most up-to-date radioecological models and knowledge. To quantify the radiological impact on marine wildlife, a suite of state-of-the-art approaches to assess exposures to Fukushima derived radionuclides of marine biota, including predictive dynamic transfer modelling, was applied to a comprehensive dataset consisting of over 500 sediment, 6000 seawater and 5000 biota data points representative of the geographically relevant area during the first year after the accident. The dataset covers the period from May 2011 to August 2012. The method used to evaluate the ecological impact consists of comparing dose (rates) to which living species of interest are exposed during a defined period to critical effects values arising from the literature. The assessed doses follow a highly variable pattern and generally do not seem to indicate the potential for effects. A possible exception of a transient nature is the relatively contaminated area in the vicinity of the discharge point, where effects on sensitive endpoints in individual plants and animals might have occurred in the weeks directly following the accident. However, impacts on population integrity would have been unlikely due to the short duration and the limited space area of the initially high exposures. Our understanding of the biological impact of radiation on chronically exposed plants and animals continues to evolve, and still needs to be improved through future studies in the FDNPS marine environment.


Environmental Science & Technology | 2014

A method of measurement of (239)Pu, (240)Pu, (241)Pu in high U content marine sediments by sector field ICP-MS and its application to Fukushima sediment samples.

Wenting Bu; Jian Zheng; Qiuju Guo; Tatsuo Aono; Hirofumi Tazoe; Keiko Tagami; Shigeo Uchida; Masatoshi Yamada

An accurate and precise analytical method is highly needed for the determination of Pu isotopes in marine sediments for the long-term marine environment monitoring that is being done since the Fukushima Dai-ichi Nuclear Power Plant accident. The elimination of uranium from the sediment samples needs to be carefully checked. We established an analytical method based on anion-exchange chromatography and SF-ICP-MS in this work. A uranium decontamination factor of 2 × 10(6) was achieved, and the U concentrations in the final sample solutions were typically below 4 pg mL(-1), thus no extra correction of (238)U interferences from the Pu spectra was needed. The method was suitable for the analysis of (241)Pu in marine sediments using large sample amounts (>10 g). We validated the method by measuring marine sediment reference materials and our results agreed well with the certified and the literature values. Surface sediments and one sediment core sample collected after the nuclear accident were analyzed. The characterization of (241)Pu/(239)Pu atom ratios in the surface sediments and the vertical distribution of Pu isotopes showed that there was no detectable Pu contamination from the nuclear accident in the marine sediments collected 30 km off the plant site.


Environmental Science & Technology | 2011

Pu and 137Cs in the Yangtze River estuary sediments: distribution and source identification.

Zhiyong Liu; Jian Zheng; Shaoming Pan; Wei Dong; Masatoshi Yamada; Tatsuo Aono; Qiuju Guo

Pu isotopes and (137)Cs were analyzed using sector field ICP-MS and γ spectrometry, respectively, in surface sediment and core sediment samples from the Yangtze River estuary. (239+240)Pu activity and (240)Pu/(239)Pu atom ratios (>0.18) shows a generally increasing trend from land to sea and from north to south in the estuary. This spatial distribution pattern indicates that the Pacific Proving Grounds (PPG) source Pu transported by ocean currents was intensively scavenged into the suspended sediment under favorable conditions, and mixed with riverine sediment as the water circulated in the estuary. This process is the main control for the distribution of Pu in the estuary. Moreover, Pu is also an important indicator for monitoring the changes of environmental radioactivity in the estuary as the river basin is currently the site of extensive human activities and the sea level is rising because of global climate changes. For core sediment samples the maximum peak of (239+240)Pu activity was observed at a depth of 172 cm. The sedimentation rate was estimated on the basis of the Pu maximum deposition peak in 1963-1964 to be 4.1 cm/a. The contributions of the PPG close-in fallout Pu (44%) and the riverine Pu (45%) in Yangtze River estuary sediments are equally important for the total Pu deposition in the estuary, which challenges the current hypothesis that the riverine Pu input was the major source of Pu budget in this area.


Journal of Radioanalytical and Nuclear Chemistry | 1996

239+240Pu and137Cs distributions in seawater from the Yamato Basin and the Tsushima Basin in the Japan Sea

Masatoshi Yamada; Tatsuo Aono; Shigeki Hirano

Seawater samples were collected from the Yamato Basin and the Tsushima Basin in the Japan Sea and analyzed for their239+240Pu and137Cs concentrations. The concentration of239+240Pu was 7.4 mBq/m3 in the surface water and increased with depth to a maximum value of 38.6 mBq/m3 at 500 m at the Yamato Basin station. The subsurface maximum may be produced by scavenging of239+240Pu in surface water and release of239+240Pu from settling particles. The239+240Pu inventories in the water column were 86.6 and 85.2 Bq/m2 at the two basin stations, suggesting that 90% of239+240Pu delivered to the Japan Sea is still present in the water column.


Journal of Chromatography A | 2014

Ultra-trace plutonium determination in small volume seawater by sector field inductively coupled plasma mass spectrometry with application to Fukushima seawater samples

Wenting Bu; Jian Zheng; Qiuju Guo; Tatsuo Aono; Keiko Tagami; Shigeo Uchida; Hirofumi Tazoe; Masatoshi Yamada

Long-term monitoring of Pu isotopes in seawater is required for assessing Pu contamination in the marine environment from the Fukushima Dai-ichi Nuclear Power Plant accident. In this study, we established an accurate and precise analytical method based on anion-exchange chromatography and SF-ICP-MS. This method was able to determine Pu isotopes in seawater samples with small volumes (20-60L). The U decontamination factor was 3×10(7)-1×10(8), which provided sufficient removal of interfering U from the seawater samples. The estimated limits of detection for (239)Pu and (240)Pu were 0.11fgmL(-1) and 0.08fgmL(-1), respectively, which corresponded to 0.01mBqm(-3) for (239)Pu and 0.03mBqm(-3) for (240)Pu when a 20L volume of seawater was measured. We achieved good precision (2.9%) and accuracy (0.8%) for measurement of the (240)Pu/(239)Pu atom ratio in the standard Pu solution with a (239)Pu concentration of 11fgmL(-1) and (240)Pu concentration of 2.7fgmL(-1). Seawater reference materials were used for the method validation and both the (239+240)Pu activities and (240)Pu/(239)Pu atom ratios agreed well with the expected values. Surface and bottom seawater samples collected off Fukushima in the western North Pacific since March 2011 were analyzed. Our results suggested that there was no significant variation of the Pu distribution in seawater in the investigated areas compared to the distribution before the accident.


Environmental Science & Technology | 2014

Release of Pu Isotopes from the Fukushima Daiichi Nuclear Power Plant Accident to the Marine Environment Was Negligible

Wenting Bu; Miho Fukuda; Jian Zheng; Tatsuo Aono; Takashi Ishimaru; Jota Kanda; Guosheng Yang; Keiko Tagami; Shigeo Uchida; Qiuju Guo; Masatoshi Yamada

Atmospheric deposition of Pu isotopes from the Fukushima Daiichi Nuclear Power Plant (FDNPP) accident has been observed in the terrestrial environment around the FDNPP site; however, their deposition in the marine environment has not been studied. The possible contamination of Pu in the marine environment has attracted great scientific and public concern. To fully understand this possible contamination of Pu isotopes from the FDNPP accident to the marine environment, we collected marine sediment core samples within the 30 km zone around the FDNPP site in the western North Pacific about two years after the accident. Pu isotopes ((239)Pu, (240)Pu, and (241)Pu) and radiocesium isotopes ((134)Cs and (137)Cs) in the samples were determined. The high activities of radiocesium and the (134)Cs/(137)Cs activity ratios with values around 1 (decay corrected to 15 March 2011) suggested that these samples were contaminated by the FDNPP accident-released radionuclides. However, the activities of (239+240)Pu and (241)Pu were low compared with the background level before the FDNPP accident. The Pu atom ratios ((240)Pu/(239)Pu and (241)Pu/(239)Pu) suggested that global fallout and the pacific proving ground (PPG) close-in fallout are the main sources for Pu contamination in the marine sediments. As Pu isotopes are particle-reactive and they can be easily incorporated with the marine sediments, we concluded that the release of Pu isotopes from the FDNPP accident to the marine environment was negligible.


Science of The Total Environment | 1999

239 + 240Pu and 137Cs concentrations in fish, cephalopods, crustaceans, shellfish, and algae collected around the Japanese coast in the early 1990s.

Masatoshi Yamada; Tatsuo Aono; Shigeki Hirano

Marine organisms, i.e. fish, cephalopods, crustaceans, shellfish, and algae, were collected in the early 1990s along the Sea of Japan coast and the Japanese Pacific coast and analyzed for their 239 + 240Pu and 137Cs concentrations. The 239 + 240Pu concentrations in muscle of fish were below 0.4 mBq/kg wet wt. and the lowest among the analyzed marine organisms. Most 137Cs concentrations in muscle of fish ranged from 100 to 300 mBq/kg wet wt. Higher concentrations of 239 + 240Pu, ranging from 1.6 to 5.7 mBq/kg wet wt., were observed in viscera of cephalopods than in their muscle. The 239 + 240Pu concentrations in whole soft tissues of bivalves varied approximately one order of magnitude from 0.8 to 6.1 mBq/kg wet wt., while 137Cs concentrations had little variation, being approximately 60 mBq/kg wet wt. The 239 + 240Pu concentrations in algae had a wide variation, ranging from 1.7 to 42.3 mBq/kg wet wt., and were higher than those of the other marine organisms. No statistically significant difference in mean concentrations of 239 + 240Pu was detected among the whole soft tissues of bivalves, viscera of cephalopods and crustaceans, and whole bodies of cephalopods and crustaceans within the 95% confidence limit. The mean concentrations of 137Cs became higher in the order, cephalopods and crustaceans and bivalves, algae, viscera of fish, muscles of fish. The mean concentrations of 239 + 240Pu were comparable for algae collected along the Japan Sea coast and the Pacific coast. Furthermore, the difference in mean concentrations of 137Cs in algae between the Japan Sea coast and the Pacific coast was not statistically significant within the 95% confidence limit. These results can be considered to indicate no definite influence from radioactive dumping into the Japan Sea by the former USSR and Russia with respect to radioactive pollution of marine organisms collected along the Japanese coast.


Talanta | 2011

Determination of 232Th in seawater by ICP-MS after preconcentration and separation using a chelating resin

Hyoe Takata; Jian Zheng; Keiko Tagami; Tatsuo Aono; Shigeo Uchida

This article describes an analytical method for the separation, preconcentration and determination of (232)Th in seawater samples at sub-ng/L levels using a NOBIAS CHELATE PA1 resin and a sector field (SF) inductively coupled plasma mass spectrometer (ICP-MS). The resin showed excellent adsorption of (232)Th at a low pH of 2.4 ± 0.4 in a relatively small volume (200 mL) of seawater. (232)Th adsorbed on the resin was easily eluted using 5 mL of 0.8M HNO(3). An enrichment factor of 40 was achieved for (232)Th analysis. Ethylenediamine-tetraacetic acid disodium salt dehydrate (EDTA) was used to investigate the effect of (232)Th-binding organic ligand on the retention of (232)Th on the chelating resin. Results obtained using acidified samples (pH of 2.4 ± 0.4) showed EDTA had no significant effect on (232)Th recovery, indicating that at this low pH, (232)Th was dissociated from the (232)Th-binding organic ligand and quantitatively retained on the NOBIAS CHELATE PA1 resin. The developed analytical method was characterized by a separation and preconcentration taking approximately 4h and a low detection limit of 0.0038 ng/L for (232)Th, and was successfully applied to the determination of (232)Th in seawater samples collected from coastal areas, Japan.

Collaboration


Dive into the Tatsuo Aono's collaboration.

Top Co-Authors

Avatar

Masatoshi Yamada

National Institute of Radiological Sciences

View shared research outputs
Top Co-Authors

Avatar

Shigeo Uchida

National Institute of Radiological Sciences

View shared research outputs
Top Co-Authors

Avatar

Jian Zheng

National Institute of Radiological Sciences

View shared research outputs
Top Co-Authors

Avatar

Keiko Tagami

National Institute of Radiological Sciences

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Jota Kanda

Tokyo University of Marine Science and Technology

View shared research outputs
Top Co-Authors

Avatar

Satoshi Yoshida

National Institute of Radiological Sciences

View shared research outputs
Top Co-Authors

Avatar

Takashi Ishimaru

Tokyo University of Marine Science and Technology

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Masashi Kusakabe

National Institute of Radiological Sciences

View shared research outputs
Researchain Logo
Decentralizing Knowledge