Tatsuo Goko
Columbia University
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Tatsuo Goko.
Nature Communications | 2013
Kan Zhao; Z. Deng; X. C. Wang; Wenpeng Han; J. L. Zhu; X. Li; Q. Q. Liu; R. C. Yu; Tatsuo Goko; Benjamin A. Frandsen; Lian Liu; F. L. Ning; Y. J. Uemura; Hanna A. Dabkowska; G. M. Luke; H. Luetkens; E. Morenzoni; S. R. Dunsiger; A. Senyshyn; P. Böni; Changqing Jin
Diluted magnetic semiconductors have received much attention due to their potential applications for spintronics devices. A prototypical system (Ga,Mn)As has been widely studied since the 1990s. The simultaneous spin and charge doping via hetero-valent (Ga(3+),Mn(2+)) substitution, however, resulted in severely limited solubility without availability of bulk specimens. Here we report the synthesis of a new diluted magnetic semiconductor (Ba(1-x)K(x))(Zn(1-y)Mn(y))(2)As(2), which is isostructural to the 122 iron-based superconductors with the tetragonal ThCr(2)Si(2) (122) structure. Holes are doped via (Ba(2+), K(1+)) replacements, while spins via isovalent (Zn(2+),Mn(2+)) substitutions. Bulk samples with x=0.1-0.3 and y=0.05-0.15 exhibit ferromagnetic order with T(C) up to 180 K, which is comparable to the highest T(C) for (Ga,Mn)As and significantly enhanced from T(C) up to 50 K of the 111-based Li(Zn,Mn)As. Moreover, ferromagnetic (Ba,K)(Zn,Mn)(2)As(2) shares the same 122 crystal structure with semiconducting BaZn(2)As(2), antiferromagnetic BaMn(2)As(2) and superconducting (Ba,K)Fe(2)As(2), which makes them promising for the development of multilayer functional devices.
Nature Communications | 2011
Z. Deng; Changqing Jin; Q. Q. Liu; X. C. Wang; J. L. Zhu; S. M. Feng; Longxian Chen; R.C. Yu; Carlos J. Arguello; Tatsuo Goko; F. L. Ning; Jinsong Zhang; Yayu Wang; A. A. Aczel; Timothy Munsie; T. J. Williams; G. M. Luke; T. Kakeshita; S. Uchida; Wataru Higemoto; T.U. Ito; Bo Gu; Sadamichi Maekawa; G.D. Morris; Y. J. Uemura
In a prototypical ferromagnet (Ga,Mn)As based on a III-V semiconductor, substitution of divalent Mn atoms into trivalent Ga sites leads to severely limited chemical solubility and metastable specimens available only as thin films. The doping of hole carriers via (Ga,Mn) substitution also prohibits electron doping. To overcome these difficulties, Masek et al. theoretically proposed systems based on a I-II-V semiconductor LiZnAs, where isovalent (Zn,Mn) substitution is decoupled from carrier doping with excess/deficient Li concentrations. Here we show successful synthesis of Li(1+y)(Zn(1-x)Mn(x))As in bulk materials. Ferromagnetism with a critical temperature of up to 50u2009K is observed in nominally Li-excess (y=0.05-0.2) compounds with Mn concentrations of x=0.02-0.15, which have p-type metallic carriers. This is presumably due to excess Li in substitutional Zn sites. Semiconducting LiZnAs, ferromagnetic Li(Zn,Mn)As, antiferromagnetic LiMnAs, and superconducting LiFeAs systems share square lattice As layers, which may enable development of novel junction devices in the future.
Physical Review B | 2009
Tatsuo Goko; A. A. Aczel; E. Baggio-Saitovitch; S. L. Bud'ko; P. C. Canfield; J. P. Carlo; Gang Chen; Pengcheng Dai; A. C. Hamann; Wen Hu; Hiroshi Kageyama; G. M. Luke; J. L. Luo; B. Nachumi; Ni Ni; D. Reznik; D. R. Sanchez-Candela; A. T. Savici; K. J. Sikes; N. L. Wang; Chris R. Wiebe; T. J. Williams; Takayoshi Yamamoto; W. Yu; Y. J. Uemura
By muon spin-relaxation measurements on single-crystal specimens, we show that superconductivity in the AFe(2)As(2) (A=Ca,Ba,Sr) systems, in both the cases of composition and pressure tunings, coexists with a strong static magnetic order in a partial volume fraction. The superfluid response from the remaining paramagnetic volume fraction of (Ba0.5K0.5)Fe2As2 exhibits a nearly linear variation in T at low temperatures, suggesting an anisotropic energy gap with line nodes and/or multigap effects. .
Physical Review B | 2002
Fumihiko Nakamura; Tatsuo Goko; Masakazu Ito; Toshizo Fujita; Satoru Nakatsuji; Hideto Fukazawa; Yoshiteru Maeno; Patricia Alireza; Dominic Forsythe; S. R. Julian
We show that the pressure-temperature phase diagram of the Mott insulator Ca2RuO4 features a metal-insulator transition at 0.5 GPa: at 300 K from paramagnetic insulator to paramagnetic quasi-two-dimensional metal, and at Tless than or equal to12 K from antiferromagnetic insulator to ferromagnetic, highly anisotropic, three-dimensional metal. We compare the metallic state to that of the structurally related p-wave superconductor Sr2RuO4, and discuss the importance of structural distortions, which are expected to couple strongly to pressure.
Physical Review B | 2008
A. A. Aczel; E. Baggio-Saitovitch; S. L. Bud'ko; P. C. Canfield; J. P. Carlo; Gang Chen; Pengcheng Dai; Tatsuo Goko; Wen Hu; G. M. Luke; J. L. Luo; Ni Ni; Sanchez-Candela; Ff Tafti; N. L. Wang; T. J. Williams; W. Yu; Y. J. Uemura
Recently, high-transition-temperature (high-T(c)) superconductivity was discovered in the iron pnictide RFeAsO(1-x)F(x) (R, rare-earth metal) family of materials. We use neutron scattering to study the structural and magnetic phase transitions in CeFeAsO(1-x)F(x) as the system is tuned from a semimetal to a high-T(c) superconductor through fluorine (F) doping, x. In the undoped state, CeFeAsO develops a structural lattice distortion followed by a collinear antiferromagnetic order with decreasing temperature. With increasing fluorine doping, the structural phase transition decreases gradually and vanishes within the superconductivity dome near x D 0 : 10, whereas the antiferromagnetic order is suppressed before the appearance of superconductivity for x > 0.06, resulting in an electronic phase diagram remarkably similar to that of the high-T(c) copper oxides. Comparison of the structural evolution of CeFeAsO(1-x)F(x) with other Fe-based superconductors suggests that the structural perfection of the Fe-As tetrahedron is important for the high-T(c) superconductivity in these Fe pnictides.
Physical Review Letters | 2009
J. P. Carlo; Y. J. Uemura; Tatsuo Goko; Gregory John MacDougall; Jose Rodriguez; W. Yu; G. M. Luke; Pengcheng Dai; Nic Shannon; S. Miyasaka; S. Suzuki; S. Tajima; G. F. Chen; Wanzheng Hu; J. L. Luo; N. L. Wang
J. P. Carlo, Y. J. Uemura, ∗ T. Goko, 2, 3 G. J. MacDougall, J. A. Rodriguez, W. Yu, G. M. Luke, Pengcheng Dai, N. Shannon, S. Miyasaka, S. Suzuki, S. Tajima, G. F. Chen, W. Z. Hu, J. L. Luo, and N. L. Wang Department of Physics, Columbia University, New York, New York 10027, USA Department of Physics and Astronomy, McMaster University, Hamilton, Ontario L8S 4M1, Canada TRIUMF, 4004 Wesbrook Mall, Vancouver, B.C., V6T 2A3, Canada Department of Physics and Astronomy, University of Tennessee, Knoxville, Tennessee 37996, USA H H Wills Physics Laboratory, University of Bristol, BS8 1TL Bristol, United Kingdom Department of Physics, Osaka University, 1-1 Machikaneyama, Toyonaka, Osaka 560-0043, Japan Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100080, Peoples Republic of China (Dated: May 14, 2008)
Physical Review Letters | 2011
Sarah Dunsiger; A. A. Aczel; Carlos J. Arguello; Hanna A. Dabkowska; A. Dabkowski; Mao-Hua Du; Tatsuo Goko; B. Javanparast; T. Lin; F. L. Ning; H. M. Noad; David J. Singh; T. J. Williams; Y. J. Uemura; M.P.J. Gingras; G. M. Luke
Theory predicts the low temperature magnetic excitations in spin ices consist of deconfined magnetic charges, or monopoles. A recent transverse-field (TF) muon spin rotation (μSR) experiment [S.u2009T. Bramwell et al., Nature (London) 461, 956 (2009)] reports results claiming to be consistent with the temperature and magnetic field dependence anticipated for monopole nucleation-the so-called second Wien effect. We demonstrate via a new series of μSR experiments in Dy(2)Ti(2)O(7) that such an effect is not observable in a TF μSR experiment. Rather, as found in many highly frustrated magnetic materials, we observe spin fluctuations which become temperature independent at low temperatures, behavior which dominates over any possible signature of thermally nucleated monopole excitations.
Physical Review B | 2013
Z. Deng; Kan Zhao; Bo Gu; Wenpeng Han; J. L. Zhu; X. C. Wang; X. Li; Q. Q. Liu; R. C. Yu; Tatsuo Goko; Benjamin A. Frandsen; Liang Liu; Jinsong Zhang; Yayu Wang; F. L. Ning; Sadamichi Maekawa; Y. J. Uemura; Changqing Jin
We report the discovery of a diluted magnetic semiconductor, Li(Zn,Mn)P, in which charge and spin are introduced independently via lithium off-stoichiometry and the isovalent substitution of Mn2+ for Zn2+, respectively. Isostructural to (Ga,Mn)As, Li(Zn, Mn) P was found to be a p-type ferromagnetic semiconductor with excess lithium providing charge doping. First-principles calculations indicate that excess Li is favored to partially occupy the Zn site, leading to hole doping. Ferromagnetism with Curie temperature up to 34 K is achieved while the system still shows semiconducting transport behavior.
Journal of the American Chemical Society | 2014
Chul Ho Lee; Lian Liu; Christopher Bejger; Ari Turkiewicz; Tatsuo Goko; Carlos J. Arguello; Benjamin A. Frandsen; Sky C. Cheung; T. Medina; Timothy Munsie; Robert D'Ortenzio; G. M. Luke; Tiglet Besara; Roger A. Lalancette; T. Siegrist; Peter W. Stephens; Andrew C. Crowther; Louis E. Brus; Yutaka Matsuo; Eiichi Nakamura; Y. J. Uemura; Philip Kim; Colin Nuckolls; Michael L. Steigerwald; Xavier Roy
In order to realize significant benefits from the assembly of solid-state materials from molecular cluster superatomic building blocks, several criteria must be met. Reproducible syntheses must reliably produce macroscopic amounts of pure material; the cluster-assembled solids must show properties that are more than simply averages of those of the constituent subunits; and rational changes to the chemical structures of the subunits must result in predictable changes in the collective properties of the solid. In this report we show that we can meet these requirements. Using a combination of magnetometry and muon spin relaxation measurements, we demonstrate that crystallographically defined superatomic solids assembled from molecular nickel telluride clusters and fullerenes undergo a ferromagnetic phase transition at low temperatures. Moreover, we show that when we modify the constituent superatoms, the cooperative magnetic properties change in predictable ways.
Physical Review B | 2013
Cui Ding; Huiyuan Man; Chuan Qin; Jicai Lu; Yunlei Sun; Quan Wang; Biqiong Yu; Chunmu Feng; Tatsuo Goko; Carlos J. Arguello; Lian Liu; B. J. Frandsen; Y. J. Uemura; Hangdong Wang; H. Luetkens; E. Morenzoni; Wenpeng Han; Changqing Jin; Timothy Munsie; T. J. Williams; Robert D'Ortenzio; T. Medina; G. M. Luke; Takashi Imai; F. L. Ning
We report the synthesis and characterization of a bulk diluted magnetic semiconductor (La1-xBax)(Zn1-xMnx)AsO (0 <= x <= 0.2) with a layered crystal structure identical to that of the 1111 FeAs superconductors. No ferromagnetic order occurs for (Zn,Mn) substitution in the parent compound LaZnAsO without charge doping. Together with carrier doping via (La,Ba) sub- stitution, a small amount of Mn substituting for Zn results in ferromagnetic order with TC up to ~40 K, although the system remains semiconducting. Muon spin relaxation measurements confirm the development of ferromagnetic order in the entire volume, with the relationship between the internal field and TC consistent with the trend found in (Ga,Mn)As, the 111 Li(Zn,Mn)As, and the 122 (Ba,K)(Zn,Mn)2As2 systems.We employ NMR techniques to investigate the nature of Mn spins in the I-II-V diluted magnetic semiconductor Li(Zn1−xMnx)P (x = 0.1, Curie temperature Tc = 25 K). We successfully identify the Li NMR signals arising from the Li sites adjacent to Mn, and probe the static and dynamic properties of Mn spins. From the NMR spin-lattice relaxation data, we show that the Mn spin-spin interactions extend over many unit cells.