Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Tatsushi Nakamoto is active.

Publication


Featured researches published by Tatsushi Nakamoto.


IEEE Transactions on Applied Superconductivity | 2014

A First Baseline for the Magnets in the High Luminosity LHC Insertion Regions

E. Todesco; Hervé Allain; G. Ambrosio; Gianluigi Arduini; F. Cerutti; R. de Maria; Luigi Salvatore Esposito; Stephane Fartoukh; P. Ferracin; H. Felice; R. Gupta; R. Kersevan; N. Mokhov; Tatsushi Nakamoto; I. Rakno; J.M. Rifflet; L. Rossi; G. Sabbi; M. Segreti; Fernando Toral; Qingjin Xu; P. Wanderer; R. van Weelderen

The High Luminosity LHC (HL-LHC) project aims at accumulating 3000 fb-1 in the years 2023-2035, i.e., ten times more w.r.t. the nominal LHC performance expected for 2010-2021. One key element to reach this challenging performance is a new insertion region to reduce the beam size in the interaction point by approximately a factor two. This requires larger aperture magnets in the region spanning from the interaction point to the matching section quadrupoles. This aperture has been fixed to 150 mm for the inner triplet quadrupoles in 2012. In this paper, we give a first baseline of the interaction region. We discuss the main motivations that lead us to choose the technology, the combination of fields/gradients and lengths, the apertures, the quantity of superconductor, and the operational margin. Key elements are also the constraints given by the energy deposition in terms of heat load and radiation damage; we present the main features related to shielding and heat removal.


IEEE Transactions on Applied Superconductivity | 1997

Design study of a superconducting insertion quadrupole magnet for the Large Hadron Collider

A. Yamamoto; K. Tsuchiya; Norio Higashi; Tatsushi Nakamoto; T. Ogitsu; N. Ohuchi; T. Shintomi; A. Terashima; G. Kirby; R. Ostojic; T.M. Taylor

The conceptual design study of a high gradient superconducting insertion quadrupole magnet has been carried out in collaboration between KEK and CERN for the Large Hadron Collider (LHC) to be built at CERN. A model magnet design has been optimized to provide a nominal design field gradient of 240 T/m with a bore aperture of 70 mm and an operational field gradient of 225 T/m at 1.9 K under radiation environment with a deposition of several watts per meter in the superconducting coils. The design and its process are discussed.


IEEE Transactions on Applied Superconductivity | 2001

Progress of LHC low-/spl beta/ quadrupole magnets at KEK

T. Shintomi; Y. Ajima; E.E. Burkhardt; T. Haruyama; Norio Higashi; Masahisa Iida; N. Kimura; S. Murai; Tatsushi Nakamoto; T. Ogitsu; Hirokatsu Ohhata; N. Ohuchi; A. Orikasa; O. Osaki; Roger Ruber; K. Sugita; K. Tanaka; A. Terashima; K. Tsuchiya; Akira Yamamoto; Hiroshi Yamaoka

Development of the LHC low-/spl beta/ insertion quadrupole magnet has been in progress at KEK since 1995 as a cooperative program between CERN and KEK. Five 1-m short model magnets have been fabricated and three of them have been tested. From the various test results of the first two models, the coil configuration was further optimized to reduce the higher magnetic field harmonic coefficients. The cold test of the third model showed satisfactory performances of the field harmonics. After this R&D work, the authors are at a stage for the fabrication of two prototype magnets which have the same scale as the production magnets. The status of the R&D for the LHC low-beta insertion quadrupole magnet at KEK is described.


IEEE Transactions on Applied Superconductivity | 2004

Design of superconducting combined function magnets for the 50 GeV proton beam line for the J-PARC neutrino experiment

Tatsushi Nakamoto; Norio Higashi; Torn Ogitsu; A. Terashima; Y. Ajima; Michael Anerella; R. Gupta; Hisashi Hattori; Tadashi Ichihara; Yosuke Iwamoto; N. Kimura; Y. Makida; Tetsuhiro Obana; K. Tanaka; P. Wanderer; Akira Yamamoto

Superconducting combined function magnets will be utilized for the 50 GeV-750 kW proton beam line for the J-PARC neutrino experiment and an R&D program has been launched at KEK. The magnet is designed to provide a combined function with a dipole field of 2.59 T and a quadrupole field of 18.7 T/m in a coil aperture of 173.4 mm. A single layer coil is proposed to reduce the fabrication cost and the coil arrangement in the 2D cross-section results in left-right asymmetry. This paper reports the design study of the magnet.


IEEE Transactions on Applied Superconductivity | 2000

Magnetic design of a low-/spl beta/ quadrupole magnet for the LHC interaction regions

K. Tsuchiya; Tatsushi Nakamoto; Akira Yamamoto; T. Ogitsu; N. Ohuchi; M. Qiu; T. Shintomi

As part of the collaboration program between CERN and KEK for the LHC, we have been developing a high field gradient superconducting insertion quadrupole magnet with a field gradient of 240 T/m in an aperture of 70 mm. To date two model magnets have been built and their quench characteristics and field qualities have been studied. Based on these results. We have performed the final adjustment of the magnet design. In this paper we present the summary of the design which includes short sample limits and field quality analysis for both the straight section and the end regions.


IEEE Transactions on Applied Superconductivity | 2004

Superconducting magnet system at the 50 GeV proton beam line for the J-PARC neutrino experiment

T. Ogitsu; Y. Makida; T. Kobayashi; Y. Ajima; Y. Doi; Norio Higashi; Yosuke Iwamoto; A. Ichikawa; N. Kimura; Tatsushi Nakamoto; Hirokatsu Ohhata; T. Shintomi; M. Takasaki; K. Tanaka; A. Terashima; Akira Yamamoto; Tetsuhiro Obana; Michael Anerella; J. Escallier; R. Gupta; G. Ganetis; M. Harrison; A. Jain; J. Muratore; B. Parker; P. Wanderer

A neutrino oscillation experiment using the J-PARC 50 GeV 0.75 MW proton beam is planned as a successor to the K2K project currently being operated at KEK. A superconducting magnet system is required for the arc section of the primary proton beam line to be within the space available at the site. A system with 28 combined function magnets is proposed to simplify the system and optimize the cost. The required fields for the magnets are 2.6 T dipole and 19 T/m quadrupole. The magnets are also required to have a large aperture, 173.4 mm diameter, to accommodate the large beam emittance. The magnets will be protected by cold diodes and cooled by forced flow supercritical helium produced by a 4.5 K, 2/spl sim/2.5 kW refrigerator. This paper reports the system overview and the design status.


IEEE Transactions on Applied Superconductivity | 2014

Design Optimization of the New D1 Dipole for HL-LHC Upgrade

Qingjin Xu; Tatsushi Nakamoto; M. Iio; T. Ogitsu; K. Sasaki; Akira Yamamoto; E. Todesco; Bernhard Auchmann

The High-Luminosity Large Hadron Collider upgrade (LHC) project aims to increase the peak luminosity of the LHC to 5 ×1034 cm - 2s - 1, and a total integrated luminosity of 3000 fb - 1 from 2020 to 2030 by upgrading the low-beta insertion system for the ATLAS and CMS experiments. The aperture of the insertion magnets including the focusing/defocusing quadrupoles and separation dipoles will be doubled to achieve a smaller β*. This paper presents the latest design updates of the separation dipole D1 magnet, including the study of the different cable types to vary the main field; the modifications of the iron shape for the new design options to minimize the iron saturation effect on field quality; and the optimization of the coil ends to reduce the peak field and higher order harmonic field integrals in the ends.


Proceedings of the 2005 Particle Accelerator Conference | 2005

Development of Superconducting Combined Function Magnets for the Proton Transport Line for the J-PARC Neutrino Experiment

Tatsushi Nakamoto; Y. Ajima; Y. Fujii; N. Higashi; A. Ichikawa; N. Kimura; T. Kobayashi; Y. Makida; T. Ogitsu; H. Ohhata; T. Okamura; K. Sasaki; M. Takasaki; K. Tanaka; A. Terashima; T. Tomaru; A. Yamamoto; M. Anerella; G. Ganetis; R. Gupta; M. Harrison; A. Jain; J. Muratore; B. Parker; P. Wanderer; T. Obana; T. Fujii; E. Hashiguchi; T. Kanahara; T. Orikasa

Superconducting combined function magnets will be utilized for the 50 GeV, 750 kW proton beam line for the J-PARC neutrino experiment. The magnet is designed to provide a dipole field of 2.6 T combined with a quadrupole field of 19 T/m in a coil aperture of 173.4 mm at a nominal current of 7345 A. Two full-scale prototype magnets to verify the magnet performance were successfully developed. The first prototype experienced no training quench during the excitation test and good field quality was confirmed.


IEEE Transactions on Applied Superconductivity | 2005

Production and measurement of the MQXA series of LHC low-/spl beta/ insertion quadrupoles

Akira Yamamoto; Tatsushi Nakamoto; T. Ogitsu; N. Ohuchi; Y. Ajima; Norio Higashi; Masahisa Iida; N. Kimura; K. Ohhata; T. Shintomi; Shigekatsu Sugawara; Kei Sugita; K. Tanaka; A. Terashima; K. Tsuchiya; T. Fujii; E. Hashiguchi; T. Kanahara; S. Murai; W. Odajima; T. Orikasa

The inner triplet quadrupole magnets (MQXA) for the LHC low-beta insertion have been developed. The quadrupoles provide a field gradient of 215 T/m at 1.9 K in a coil aperture of 70 mm diameter and with an effective magnetic length of 6.37 m. The series of 20 magnets have been produced in industry, and full testing has been done at KEK. We present an overview of the production and the results from mechanical and magnetic measurements.


IEEE Transactions on Applied Superconductivity | 2002

Status of the LHC low-beta insertion quadrupole magnet development at KEK

T. Ogitsu; Tatsushi Nakamoto; N. Ohuchi; Y. Ajima; E.E. Burkhardt; Norio Higashi; H. Hirano; M. Lida; N. Kimura; Hirokatsu Ohhata; K. Tanaka; T. Shintomi; A. Terashima; Kiyosumi Tsuchiya; Akira Yamamoto; T. Orikasa; S. Murai; O. Oosaki

The development of the LHC low-beta insertion quadrupole magnets has been conducted at KEK since 1996. After the successful development of short model magnets, the first prototype magnet has been built by Toshiba and is tested at KEK. Although the quench performance and the field quality of the magnet are satisfactory, a design problem is found in one of the end spacers. The problem increases the risk of a turn-to-turn and in fact causes shorts in the second prototype magnet, and in the trial coil of the first production magnet. The design is modified and the problem appears to be resolved. The construction of the production magnets is now started and lasts till the summer of 2004.

Collaboration


Dive into the Tatsushi Nakamoto's collaboration.

Researchain Logo
Decentralizing Knowledge