Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Tatsutoshi Nakahata is active.

Publication


Featured researches published by Tatsutoshi Nakahata.


Immunity | 2009

Functional Delineation and Differentiation Dynamics of Human CD4+ T Cells Expressing the FoxP3 Transcription Factor

Makoto Miyara; Yumiko Yoshioka; Akihiko Kitoh; Tomoko Shima; Kajsa Wing; Akira Niwa; Christophe Parizot; Cécile Taflin; Toshio Heike; Dominique Valeyre; Alexis Mathian; Tatsutoshi Nakahata; Tomoyuki Yamaguchi; Takashi Nomura; Masahiro Ono; Zahir Amoura; Guy Gorochov; Shimon Sakaguchi

FoxP3 is a key transcription factor for the development and function of natural CD4(+) regulatory T cells (Treg cells). Here we show that human FoxP3(+)CD4(+) T cells were composed of three phenotypically and functionally distinct subpopulations: CD45RA(+)FoxP3(lo) resting Treg cells (rTreg cells) and CD45RA(-)FoxP3(hi) activated Treg cells (aTreg cells), both of which were suppressive in vitro, and cytokine-secreting CD45RA(-)FoxP3(lo) nonsuppressive T cells. The proportion of the three subpopulations differed between cord blood, aged individuals, and patients with immunological diseases. Terminally differentiated aTreg cells rapidly died whereas rTreg cells proliferated and converted into aTreg cells in vitro and in vivo. This was shown by the transfer of rTreg cells into NOD-scid-common gamma-chain-deficient mice and by TCR sequence-based T cell clonotype tracing in peripheral blood in a normal individual. Taken together, the dissection of FoxP3(+) cells into subsets enables one to analyze Treg cell differentiation dynamics and interactions in normal and disease states, and to control immune responses through manipulating particular FoxP3(+) subpopulations.


Cell | 2004

Generation of Pluripotent Stem Cells from Neonatal Mouse Testis

Mito Kanatsu-Shinohara; Kimiko Inoue; Jiyoung Lee; Momoko Yoshimoto; Narumi Ogonuki; Hiromi Miki; Shiro Baba; Takeo Kato; Yasuhiro Kazuki; Shinya Toyokuni; Megumi Toyoshima; Ohtsura Niwa; Mitsuo Oshimura; Toshio Heike; Tatsutoshi Nakahata; Fumitoshi Ishino; Atsuo Ogura; Takashi Shinohara

Although germline cells can form multipotential embryonic stem (ES)/embryonic germ (EG) cells, these cells can be derived only from embryonic tissues, and such multipotent cells have not been available from neonatal gonads. Here we report the successful establishment of ES-like cells from neonatal mouse testis. These ES-like cells were phenotypically similar to ES/EG cells except in their genomic imprinting pattern. They differentiated into various types of somatic cells in vitro under conditions used to induce the differentiation of ES cells and produced teratomas after inoculation into mice. Furthermore, these ES-like cells formed germline chimeras when injected into blastocysts. Thus, the capacity to form multipotent cells persists in neonatal testis. The ability to derive multipotential stem cells from the neonatal testis has important implications for germ cell biology and opens the possibility of using these cells for biotechnology and medicine.


Nature | 2009

Frequent inactivation of A20 in B-cell lymphomas

Motohiro Kato; Masashi Sanada; Itaru Kato; Yasuharu Sato; Junko Takita; Kengo Takeuchi; Akira Niwa; Yuyan Chen; Kumi Nakazaki; Junko Nomoto; Yoshitaka Asakura; Satsuki Muto; Azusa Tamura; Mitsuru Iio; Yoshiki Akatsuka; Yasuhide Hayashi; Hiraku Mori; Takashi Igarashi; Mineo Kurokawa; Shigeru Chiba; Shigeo Mori; Yuichi Ishikawa; Koji Okamoto; Kensei Tobinai; Hitoshi Nakagama; Tatsutoshi Nakahata; Tadashi Yoshino; Yukio Kobayashi; Seishi Ogawa

A20 is a negative regulator of the NF-κB pathway and was initially identified as being rapidly induced after tumour-necrosis factor-α stimulation. It has a pivotal role in regulation of the immune response and prevents excessive activation of NF-κB in response to a variety of external stimuli; recent genetic studies have disclosed putative associations of polymorphic A20 (also called TNFAIP3) alleles with autoimmune disease risk. However, the involvement of A20 in the development of human cancers is unknown. Here we show, using a genome-wide analysis of genetic lesions in 238 B-cell lymphomas, that A20 is a common genetic target in B-lineage lymphomas. A20 is frequently inactivated by somatic mutations and/or deletions in mucosa-associated tissue lymphoma (18 out of 87; 21.8%) and Hodgkin’s lymphoma of nodular sclerosis histology (5 out of 15; 33.3%), and, to a lesser extent, in other B-lineage lymphomas. When re-expressed in a lymphoma-derived cell line with no functional A20 alleles, wild-type A20, but not mutant A20, resulted in suppression of cell growth and induction of apoptosis, accompanied by downregulation of NF-κB activation. The A20-deficient cells stably generated tumours in immunodeficient mice, whereas the tumorigenicity was effectively suppressed by re-expression of A20. In A20-deficient cells, suppression of both cell growth and NF-κB activity due to re-expression of A20 depended, at least partly, on cell-surface-receptor signalling, including the tumour-necrosis factor receptor. Considering the physiological function of A20 in the negative modulation of NF-κB activation induced by multiple upstream stimuli, our findings indicate that uncontrolled signalling of NF-κB caused by loss of A20 function is involved in the pathogenesis of subsets of B-lineage lymphomas.


Science Translational Medicine | 2012

Drug Screening for ALS Using Patient-Specific Induced Pluripotent Stem Cells

Naohiro Egawa; Shiho Kitaoka; Kayoko Tsukita; Motoko Naitoh; Kazutoshi Takahashi; Takuya Yamamoto; Fumihiko Adachi; Takayuki Kondo; Keisuke Okita; Isao Asaka; Takashi Aoi; Akira Watanabe; Yasuhiro Yamada; Asuka Morizane; Jun Takahashi; Takashi Ayaki; Hidefumi Ito; Katsuhiro Yoshikawa; Satoko Yamawaki; Shigehiko Suzuki; Dai Watanabe; Hiroyuki Hioki; Takeshi Kaneko; Kouki Makioka; Koichi Okamoto; Hiroshi Takuma; Akira Tamaoka; Kazuko Hasegawa; Takashi Nonaka; Masato Hasegawa

Anacardic acid attenuates mutant TDP-43–associated abnormalities in motor neurons derived from ALS patient–specific induced pluripotent stem cells. A Stepping Stone to ALS Drug Screening Amyotrophic lateral sclerosis (ALS) is an untreatable disorder in which the motor neurons degenerate, resulting in paralysis and death. Induced pluripotent stem cell (iPSC) technology makes it possible to analyze motor neurons from patients with ALS and to use them for screening new candidate drugs. In new work, Egawa et al. obtained motor neurons by inducing differentiation of iPSC lines derived from several patients with familial ALS. These patients carried disease-causing mutations in the gene encoding Tar DNA binding protein-43 (TDP-43). The ALS motor neurons in culture recapitulated cellular and molecular abnormalities associated with ALS. For example, the authors found that mutant TDP-43 in the ALS motor neurons perturbed RNA metabolism and that the motor neurons were more vulnerable to cellular stressors such as arsenite. The researchers then used the ALS motor neurons in a drug screening assay and identified a compound called anacardic acid, a histone acetyltransferase inhibitor, that could reverse some of the ALS phenotypes observed in the motor neurons. The new work provides an encouraging step toward using motor neurons generated from iPSCs derived from ALS patients to learn more about what triggers the death of motor neurons in this disease and to identify new candidate drugs that may be able to slow or reverse the devastating loss of motor neurons. Amyotrophic lateral sclerosis (ALS) is a late-onset, fatal disorder in which the motor neurons degenerate. The discovery of new drugs for treating ALS has been hampered by a lack of access to motor neurons from ALS patients and appropriate disease models. We generate motor neurons from induced pluripotent stem cells (iPSCs) from familial ALS patients, who carry mutations in Tar DNA binding protein-43 (TDP-43). ALS patient–specific iPSC–derived motor neurons formed cytosolic aggregates similar to those seen in postmortem tissue from ALS patients and exhibited shorter neurites as seen in a zebrafish model of ALS. The ALS motor neurons were characterized by increased mutant TDP-43 protein in a detergent-insoluble form bound to a spliceosomal factor SNRPB2. Expression array analyses detected small increases in the expression of genes involved in RNA metabolism and decreases in the expression of genes encoding cytoskeletal proteins. We examined four chemical compounds and found that a histone acetyltransferase inhibitor called anacardic acid rescued the abnormal ALS motor neuron phenotype. These findings suggest that motor neurons generated from ALS patient–derived iPSCs may provide a useful tool for elucidating ALS disease pathogenesis and for screening drug candidates.


Journal of Clinical Investigation | 2000

Expansion of human NOD/SCID-repopulating cells by stem cell factor, Flk2/Flt3 ligand, thrombopoietin, IL-6, and soluble IL-6 receptor

Takahiro Ueda; Kohichiro Tsuji; Hiroshi Yoshino; Yasuhiro Ebihara; Hiroshi Yagasaki; Hiroaki Hisakawa; Tetsuo Mitsui; Atsushi Manabe; Ryuhei Tanaka; Kimio Kobayashi; Mamoru Ito; Kiyoshi Yasukawa; Tatsutoshi Nakahata

Here, we demonstrate a significant ex vivo expansion of human hematopoietic stem cells capable of repopulating in NOD/SCID mice. Using a combination of stem cell factor (SCF), Flk2/Flt3 ligand (FL), thrombopoietin (TPO), and a complex of IL-6 and soluble IL-6 receptor (IL-6/sIL-6R), we cultured cord blood CD34(+) cells for 7 days and transplanted these cells into NOD/SCID mice. Bone marrow engraftment was judged successful when recipient animals contained measurable numbers of human CD45(+) cells 10-12 weeks after transplantation. When cells were cultured with SCF+FL+TPO+IL-6/sIL-6R, 13 of 16 recipients were successfully engrafted, and CD45(+) cells represented 11.5% of bone marrow cells in engrafted recipients. Cells cultured with a subset of these factors were less efficiently engrafted, both as measured by frequency of successful transplantations and prevalence of CD45(+) cells. In animals receiving cells cultured with all 4 factors, human CD45(+) cells represented various lineages, including a large number of CD34(+) cells. The proportion of CD45(+) cells in recipient marrow was 10 times higher in animals receiving these cultured cells than in those receiving comparable numbers of fresh CD34(+) cells, and the expansion rate was estimated at 4.2-fold by a limiting dilution method. Addition of IL-3 to the cytokine combination abrogated the repopulating ability of the expanded cells. The present study may provide a novel culture method for the expansion of human transplantable hematopoietic stem cells suitable for clinical applications.


Proceedings of the National Academy of Sciences of the United States of America | 2010

Unique multipotent cells in adult human mesenchymal cell populations

Yasumasa Kuroda; Masaaki Kitada; Shohei Wakao; Kouki Nishikawa; Yukihiro Tanimura; Hideki Makinoshima; Makoto Goda; Hideo Akashi; Ayumu Inutsuka; Akira Niwa; Taeko Shigemoto; Yoko Nabeshima; Tatsutoshi Nakahata; Yo-ichi Nabeshima; Yoshinori Fujiyoshi; Mari Dezawa

We found adult human stem cells that can generate, from a single cell, cells with the characteristics of the three germ layers. The cells are stress-tolerant and can be isolated from cultured skin fibroblasts or bone marrow stromal cells, or directly from bone marrow aspirates. These cells can self-renew; form characteristic cell clusters in suspension culture that express a set of genes associated with pluripotency; and can differentiate into endodermal, ectodermal, and mesodermal cells both in vitro and in vivo. When transplanted into immunodeficient mice by local or i.v. injection, the cells integrated into damaged skin, muscle, or liver and differentiated into cytokeratin 14-, dystrophin-, or albumin-positive cells in the respective tissues. Furthermore, they can be efficiently isolated as SSEA-3(+) cells. Unlike authentic ES cells, their proliferation activity is not very high and they do not form teratomas in immunodeficient mouse testes. Thus, nontumorigenic stem cells with the ability to generate the multiple cell types of the three germ layers can be obtained through easily accessible adult human mesenchymal cells without introducing exogenous genes. These unique cells will be beneficial for cell-based therapy and biomedical research.


Molecular and Cellular Biology | 1999

Suppression of STAT5 Functions in Liver, Mammary Glands, and T Cells in Cytokine-Inducible SH2-Containing Protein 1 Transgenic Mice

Akira Matsumoto; Youichi Seki; Masato Kubo; Satoshi Ohtsuka; Asuka Suzuki; Itsuro Hayashi; Kohichiro Tsuji; Tatsutoshi Nakahata; Masaru Okabe; Shuichi Yamada; Akihiko Yoshimura

ABSTRACT Various cytokines utilize Janus kinase (JAK) and the STAT (signal transducers and activators of transcription) family of transcription factors to carry out their biological functions. Among STATs, two highly related proteins, STAT5a and STAT5b, are activated by various cytokines, including prolactin, growth hormone, erythropoietin, interleukin 2 (IL-2), and IL-3. We have cloned a STAT5-dependent immediate-early cytokine-responsive gene, CIS1 (encoding cytokine-inducible SH2-containing protein 1). In this study, we created CIS1 transgenic mice under the control of a β-actin promoter. The transgenic mice developed normally; however, their body weight was lower than that of the wild-type mice, suggesting a defect in growth hormone signaling. Female transgenic mice failed to lactate after parturition because of a failure in terminal differentiation of the mammary glands, suggesting a defect in prolactin signaling. The IL-2-dependent upregulation of the IL-2 receptor α chain and proliferation were partially suppressed in the T cells of transgenic mice. These phenotypes remarkably resembled those found in STAT5a and/or STAT5b knockout mice. Indeed, STAT5 tyrosine phosphorylation was suppressed in mammary glands and the liver. Furthermore, the IL-2-induced activation of STAT5 was markedly inhibited in T cells in transgenic mice, while leukemia inhibitory factor-induced STAT3 phosphorylation was not affected. We also found that the numbers of γδ T cells, as well as those of natural killer (NK) cells and NKT cells, were dramatically decreased and that Th1/Th2 differentiation was altered in transgenic mice. These data suggest that CIS1 functions as a specific negative regulator of STAT5 in vivo and plays an important regulatory role in the liver, mammary glands, and T cells.


Arthritis & Rheumatism | 2011

High Incidence of NLRP3 Somatic Mosaicism in Patients With Chronic Infantile Neurologic, Cutaneous, Articular Syndrome: Results of an International Multicenter Collaborative Study

Naoko Tanaka; Kazushi Izawa; Megumu Saito; Mio Sakuma; Koichi Oshima; Osamu Ohara; Ryuta Nishikomori; Takeshi Morimoto; Naotomo Kambe; Raphaela Goldbach-Mansky; Ivona Aksentijevich; Geneviève de Saint Basile; Bénédicte Neven; Marielle van Gijn; Joost Frenkel; Juan I. Aróstegui; Jordi Yagüe; Rosa Merino; Mercedes Ibañez; Alessandra Pontillo; Hidetoshi Takada; Tomoyuki Imagawa; Tomoki Kawai; Takahiro Yasumi; Tatsutoshi Nakahata; Toshio Heike

OBJECTIVE Chronic infantile neurologic, cutaneous, articular (CINCA) syndrome, also known as neonatal-onset multisystem inflammatory disease (NOMID), is a dominantly inherited systemic autoinflammatory disease. Although heterozygous germline gain-of-function NLRP3 mutations are a known cause of this disease, conventional genetic analyses fail to detect disease-causing mutations in ∼40% of patients. Since somatic NLRP3 mosaicism has been detected in several mutation-negative NOMID/CINCA syndrome patients, we undertook this study to determine the precise contribution of somatic NLRP3 mosaicism to the etiology of NOMID/CINCA syndrome. METHODS An international case-control study was performed to detect somatic NLRP3 mosaicism in NOMID/CINCA syndrome patients who had shown no mutation during conventional sequencing. Subcloning and sequencing of NLRP3 was performed in these mutation-negative NOMID/CINCA syndrome patients and their healthy relatives. Clinical features were analyzed to identify potential genotype-phenotype associations. RESULTS Somatic NLRP3 mosaicism was identified in 18 of the 26 patients (69.2%). Estimates of the level of mosaicism ranged from 4.2% to 35.8% (mean ± SD 12.1 ± 7.9%). Mosaicism was not detected in any of the 19 healthy relatives (18 of 26 patients versus 0 of 19 relatives; P < 0.0001). In vitro functional assays indicated that the detected somatic NLRP3 mutations had disease-causing functional effects. No differences in NLRP3 mosaicism were detected between different cell lineages. Among nondescript clinical features, a lower incidence of mental retardation was noted in patients with somatic mosaicism. Genotype-matched comparison confirmed that patients with somatic NLRP3 mosaicism presented with milder neurologic symptoms. CONCLUSION Somatic NLRP3 mutations were identified in 69.2% of patients with mutation-negative NOMID/CINCA syndrome. This indicates that somatic NLRP3 mosaicism is a major cause of NOMID/CINCA syndrome.


Proceedings of the National Academy of Sciences of the United States of America | 2011

Multilineage-differentiating stress-enduring (Muse) cells are a primary source of induced pluripotent stem cells in human fibroblasts

Shohei Wakao; Masaaki Kitada; Yasumasa Kuroda; Taeko Shigemoto; Dai Matsuse; Hideo Akashi; Yukihiro Tanimura; Kenichiro Tsuchiyama; Tomohiko Kikuchi; Makoto Goda; Tatsutoshi Nakahata; Yoshinori Fujiyoshi; Mari Dezawa

The stochastic and elite models have been proposed for the mechanism of induced pluripotent stem (iPS) cell generation. In this study we report a system that supports the elite model. We previously identified multilineage-differentiating stress-enduring (Muse) cells in human dermal fibroblasts that are characterized by stress tolerance, expression of pluripotency markers, self-renewal, and the ability to differentiate into endodermal-, mesodermal-, and ectodermal-lineage cells from a single cell. They can be isolated as stage-specific embryonic antigen-3/CD105 double-positive cells. When human fibroblasts were separated into Muse and non-Muse cells and transduced with Oct3/4, Sox2, Klf4, and c-Myc, iPS cells were generated exclusively from Muse cells but not from non-Muse cells. Although some colonies were formed from non-Muse cells, they were unlike iPS cells. Furthermore, epigenetic alterations were not seen, and some of the major pluripotency markers were not expressed for the entire period during iPS cell generation. These findings were confirmed further using cells transduced with a single polycistronic virus vector encoding all four factors. The results demonstrate that in adult human fibroblasts a subset of preexisting adult stem cells whose properties are similar in some respects to those of iPS cells selectively become iPS cells, but the remaining cells make no contribution to the generation of iPS cells. Therefore this system seems to fit the elite model rather than the stochastic model.


European Journal of Haematology | 2007

Retrospective nationwide survey of Japanese patients with transfusion-dependent MDS and aplastic anemia highlights the negative impact of iron overload on morbidity/mortality.

Masaaki Takatoku; Takashi Uchiyama; Shinichiro Okamoto; Yuzuru Kanakura; Kenichi Sawada; Masao Tomonaga; Shinji Nakao; Tatsutoshi Nakahata; Mine Harada; Takashi Murate; Keiya Ozawa

Objective:  Myelodysplastic syndromes (MDS) and aplastic anemia (AA) are the most common anemias that require transfusion therapy in Japan. This retrospective survey investigated relationships between iron overload, chelation practices, and morbidity/mortality in patients with these diseases.

Collaboration


Dive into the Tatsutoshi Nakahata's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge