Tatsuya Furuichi
Jikei University School of Medicine
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Tatsuya Furuichi.
Journal of Cell Biology | 2001
Wenguang Liu; Satoru Toyosawa; Tatsuya Furuichi; Naoko Kanatani; Carolina A. Yoshida; Yang Liu; Miki Himeno; Satoru Narai; Akira Yamaguchi; Toshihisa Komori
Targeted disruption of core binding factor α1 (Cbfa1) showed that Cbfa1 is an essential transcription factor in osteoblast differentiation and bone formation. Furthermore, both in vitro and in vivo studies showed that Cbfa1 plays important roles in matrix production and mineralization. However, it remains to be clarified how Cbfa1 controls osteoblast differentiation, bone formation, and bone remodelling. To understand fully the physiological functions of Cbfa1, we generated transgenic mice that overexpressed Cbfa1 in osteoblasts using type I collagen promoter. Unexpectedly, Cbfa1 transgenic mice showed osteopenia with multiple fractures. Cortical bone, which was thin, porous, and enriched with osteopontin, was invaded by osteoclasts, despite the absence of acceleration of osteoclastogenesis. Although the number of neonatal osteoblasts was increased, their function was impaired in matrix production and mineralization. Furthermore, terminally differentiated osteoblasts, which strongly express osteocalcin, and osteocytes were diminished greatly, whereas less mature osteoblasts expressing osteopontin accumulated in adult bone. These data indicate that immature organization of cortical bone, which was caused by the maturational blockage of osteoblasts, led to osteopenia and fragility in transgenic mice, demonstrating that Cbfa1 inhibits osteoblast differentiation at a late stage.
Nature Genetics | 2002
Carolina A. Yoshida; Tatsuya Furuichi; Takashi Fujita; Ryo Fukuyama; Naoko Kanatani; Shinji Kobayashi; Masanobu Satake; Kenji Takada; Toshihisa Komori
Core-binding factor β (CBFβ, also called polyomavirus enhancer binding protein 2β (PEBP2B)) is associated with an inversion of chromosome 16 and is associated with acute myeloid leukemia in humans. CBFβ forms a heterodimer with RUNX1 (runt-related transcription factor 1), which has a DNA binding domain homologous to the pair-rule protein runt in Drosophila melanogaster. Both RUNX1 and CBFβ are essential for hematopoiesis. Haploinsufficiency of another runt-related protein, RUNX2 (also called CBFA1), causes cleidocranial dysplasia in humans and is essential in skeletal development by regulating osteoblast differentiation and chondrocyte maturation. Mice deficient in Cbfb (Cbfb−/−) die at midgestation, so the function of Cbfβ in skeletal development has yet to be ascertained. To investigate this issue, we rescued hematopoiesis of Cbfb−/− mice by introducing Cbfb using the Gata1 promoter. The rescued Cbfb−/− mice recapitulated fetal liver hematopoiesis in erythroid and megakaryocytic lineages and survived until birth, but showed severely delayed bone formation. Although mesenchymal cells differentiated into immature osteoblasts, intramembranous bones were poorly formed. The maturation of chondrocytes into hypertrophic cells was markedly delayed, and no endochondral bones were formed. Electrophoretic mobility shift assays and reporter assays showed that Cbfβ was necessary for the efficient DNA binding of Runx2 and for Runx2-dependent transcriptional activation. These findings indicate that Cbfβ is required for the function of Runx2 in skeletal development.
Nature Cell Biology | 2009
Tomohiko Murakami; Atsushi Saito; Shin-ichiro Hino; Shinichi Kondo; Soshi Kanemoto; Kazuyasu Chihara; Hiroshi Sekiya; Kenji Tsumagari; Kimiko Ochiai; Kazuya Yoshinaga; Masahiro Saitoh; Riko Nishimura; Toshiyuki Yoneda; Ikuyo Kou; Tatsuya Furuichi; Shiro Ikegawa; Masahito Ikawa; Masaru Okabe; Akio Wanaka; Kazunori Imaizumi
Eukaryotic cells have signalling pathways from the endoplasmic reticulum (ER) to cytosol and nuclei, to avoid excess accumulation of unfolded proteins in the ER. We previously identified a new type of ER stress transducer, OASIS, a bZIP (basic leucine zipper) transcription factor, which is a member of the CREB/ATF family and has a transmembrane domain. OASIS is processed by regulated intramembrane proteolysis (RIP) in response to ER stress, and is highly expressed in osteoblasts. OASIS−/− mice exhibited severe osteopenia, involving a decrease in type I collagen in the bone matrix and a decline in the activity of osteoblasts, which showed abnormally expanded rough ER, containing of a large amount of bone matrix proteins. Here we identify the gene for type 1 collagen, Col1a1, as a target of OASIS, and demonstrate that OASIS activates the transcription of Col1a1 through an unfolded protein response element (UPRE)-like sequence in the osteoblast-specific Col1a1 promoter region. Moreover, expression of OASIS in osteoblasts is induced by BMP2 (bone morphogenetic protein 2), the signalling of which is required for bone formation. Additionally, RIP of OASIS is accelerated by BMP2 signalling, which causes mild ER stress. Our studies show that OASIS is critical for bone formation through the transcription of Col1a1 and the secretion of bone matrix proteins, and they reveal a new mechanism by which ER stress-induced signalling mediates bone formation.
PLOS ONE | 2008
Toshiyuki Fukada; Natacha Civic; Tatsuya Furuichi; Shinji Shimoda; Kenji Mishima; Hiroyuki Higashiyama; Yayoi Idaira; Yoshinobu Asada; Hiroshi Kitamura; Satoru Yamasaki; Shintaro Hojyo; Manabu Nakayama; Osamu Ohara; Haruhiko Koseki; Heloisa G. dos Santos; Luisa Bonafé; Russia Ha-Vinh; Andreas Zankl; Sheila Unger; Marius E. Kraenzlin; Jacques S. Beckmann; Ichiro Saito; Carlo Rivolta; Shiro Ikegawa; Andrea Superti-Furga; Toshio Hirano
Background Zinc (Zn) is an essential trace element and it is abundant in connective tissues, however biological roles of Zn and its transporters in those tissues and cells remain unknown. Methodology/Principal Findings Here we report that mice deficient in Zn transporter Slc39a13/Zip13 show changes in bone, teeth and connective tissue reminiscent of the clinical spectrum of human Ehlers-Danlos syndrome (EDS). The Slc39a13 knockout (Slc39a13-KO) mice show defects in the maturation of osteoblasts, chondrocytes, odontoblasts, and fibroblasts. In the corresponding tissues and cells, impairment in bone morphogenic protein (BMP) and TGF-β signaling were observed. Homozygosity for a SLC39A13 loss of function mutation was detected in sibs affected by a unique variant of EDS that recapitulates the phenotype observed in Slc39a13-KO mice. Conclusions/Significance Hence, our results reveal a crucial role of SLC39A13/ZIP13 in connective tissue development at least in part due to its involvement in the BMP/TGF-β signaling pathways. The Slc39a13-KO mouse represents a novel animal model linking zinc metabolism, BMP/TGF-β signaling and connective tissue dysfunction.
Nature Cell Biology | 2009
Atsushi Saito; Shin-ichiro Hino; Tomohiko Murakami; Soshi Kanemoto; Shinichi Kondo; Masahiro Saitoh; Riko Nishimura; Toshiyuki Yoneda; Tatsuya Furuichi; Shiro Ikegawa; Masahito Ikawa; Masaru Okabe; Kazunori Imaizumi
Many tissues have a specific signal transduction system for endoplasmic reticulum (ER) dysfunction; however, the mechanisms underlying the ER stress response in cartilage remain unclear. BBF2H7 (BBF2 human homologue on chromosome 7), an ER-resident basic leucine zipper transcription factor, is activated in response to ER stress and is highly expressed in chondrocytes. In this study, we generated Bbf2h7−/− mice to assess the in vivo function of BBF2H7. The mice showed severe chondrodysplasia and died by suffocation shortly after birth because of an immature chest cavity. The cartilage showed a lack of typical columnar structure in the proliferating zone and a decrease in the size of the hypertrophic zone, resulting in a significant reduction of extracellular matrix proteins. Interestingly, proliferating chondrocytes showed abnormally expanded ER, containing aggregated type II collagen (Col2) and cartilage oligomeric matrix protein (COMP). We identified Sec23a, which encodes a coat protein complex II component responsible for protein transport from the ER to the Golgi, as a target of BBF2H7, which directly bound to a CRE-like sequence in the promoter region of Sec23a to activate its transcription. When Sec23a was introduced to Bbf2h7−/− chondrocytes, the impaired transport and secretion of cartilage matrix proteins was totally restored, indicating that by activating protein secretion the BBF2H7–Sec23a pathway has a crucial role in chondrogenesis. Our findings provide a new link by which ER stress is converted to signalling for the activation of ER-to-Golgi trafficking.
Developmental Dynamics | 2007
Zenjiro Maruyama; Carolina A. Yoshida; Tatsuya Furuichi; Norio Amizuka; Masako Ito; Ryo Fukuyama; Toshihiro Miyazaki; Hideki Kitaura; Kouhei Nakamura; Takashi Fujita; Naoko Kanatani; Takeshi Moriishi; Kei Yamana; Wenguang Liu; Hiroshi Kawaguchi; Kozo Nakamura; Toshihisa Komori
Runx2 is an essential transcription factor for osteoblast differentiation. However, the functions of Runx2 in postnatal bone development remain to be clarified. Introduction of dominant‐negative (dn)‐Runx2 did not inhibit Col1a1 and osteocalcin expression in mature osteoblastic cells. In transgenic mice that expressed dn‐Runx2 in osteoblasts, the trabecular bone had increased mineralization, increased volume, and features of compact bone, and the expression of major bone matrix protein genes was relatively maintained. After ovariectomy, neither osteolysis nor bone formation was enhanced and bone was relatively conserved. In wild‐type mice, Runx2 was strongly expressed in immature osteoblasts but downregulated during osteoblast maturation. These findings indicate that the maturity and turnover rate of bone are determined by the level of functional Runx2 and Runx2 is responsible for bone loss in estrogen deficiency, but that Runx2 is not essential for maintenance of the expression of major bone matrix protein genes in postnatal bone development and maintenance. Developmental Dynamics 236:1876–1890, 2007.
Journal of Cell Science | 2003
Hirayuki Enomoto; Tatsuya Furuichi; Akira Zanma; Kei Yamana; Carolina A. Yoshida; Satoru Sumitani; Hiroyasu Yamamoto; Motomi Enomoto-Iwamoto; Masahiro Iwamoto; Toshihisa Komori
Runx2 (runt-related transcription factor 2) is an important transcription factor for chondrocyte differentiation as well as for osteoblast differentiation. To investigate the function of Runx2 in chondrocytes, we isolated chondrocytes from the rib cartilage of Runx2-deficient (Runx2–/–) mice and examined the effect of Runx2 deficiency on chondrocyte function and behavior in culture for up to 12 days. At the beginning of the culture, Runx2–/– chondrocytes actively proliferated, had a polygonal shape and expressed type II collagen; these are all characteristics of chondrocytes. However, they gradually accumulated lipid droplets that stained with oil red O and resembled adipocytes. Northern blot analysis revealed that the expression of adipocyte-related differentiation marker genes including PPARγ (peroxisome proliferator-activated receptor γ), aP2 and Glut4 increased over time in culture, whereas expression of type II collagen decreased. Furthermore, the expression of Pref-1, an important inhibitory gene of adipogenesis, was remarkably decreased. Adenoviral introduction of Runx2 or treatment with transforming growth factor-β, retinoic acid, interleukin-1β, basic fibroblast growth factor, platelet-derived growth factor or parathyroid hormone inhibited the adipogenic changes in Runx2–/– chondrocytes. Runx2 and transforming growth factor-β synergistically upregulated interleukin-11 expression, and the addition of interleukin-11 to the culture medium reduced adipogenesis in Runx2–/– chondrocytes. These findings indicate that depletion of Runx2 resulted in the loss of the differentiated phenotype in chondrocytes and induced adipogenic differentiation in vitro, and show that Runx2 plays important roles in maintaining the chondrocyte phenotype and in inhibiting adipogenesis. Our findings suggest that these Runx2-dependent functions are mediated, at least in part, by interleukin-11.
Proceedings of the National Academy of Sciences of the United States of America | 2011
Yan Geng; Yingying Dong; Mingyan Yu; Long Zhang; Xiaohua Yan; Jingxia Sun; Long Qiao; Huixia Geng; Masahiro Nakajima; Tatsuya Furuichi; Shiro Ikegawa; Xiang Gao; Ye-Guang Chen; Dianhua Jiang; Wen Ning
Lung morphogenesis is a well orchestrated, tightly regulated process through several molecular pathways, including TGF-β/bone morphogenetic protein (BMP) signaling. Alteration of these signaling pathways leads to lung malformation. We investigated the role of Follistatin-like 1 (Fstl1), a secreted follistatin-module–containing glycoprotein, in lung development. Deletion of Fstl1 in mice led to postnatal lethality as a result of respiratory failure. Analysis of the mutant phenotype showed that Fstl1 is essential for tracheal cartilage formation and alveolar maturation. Deletion of the Fstl1 gene resulted in malformed tracheal rings manifested as discontinued rings and reduced ring number. Fstl1-deficient mice displayed septal hypercellularity and end-expiratory atelectasis, which were associated with impaired differentiation of distal alveolar epithelial cells and insufficient production of mature surfactant proteins. Mechanistically, Fstl1 interacted directly with BMP4, negatively regulated BMP4/Smad1/5/8 signaling, and inhibited BMP4-induced surfactant gene expression. Reducing BMP signaling activity by Noggin rescued pulmonary atelectasis of Fstl1-deficient mice. Therefore, we provide in vivo and in vitro evidence to demonstrate that Fstl1 modulates lung development and alveolar maturation, in part, through BMP4 signaling.
PLOS ONE | 2010
Masahiro Nakajima; Atsushi Takahashi; Ikuyo Kou; Juan J. Gomez-Reino; Tatsuya Furuichi; Jin Dai; Akihiro Sudo; Atsumasa Uchida; Naoshi Fukui; Michiaki Kubo; Naoyuki Kamatani; Tatsuhiko Tsunoda; Konstantinos N. Malizos; Aspasia Tsezou; Antonio Gonzalez; Yusuke Nakamura; Shiro Ikegawa
Osteoarthritis (OA) is a common disease that has a definite genetic component. Only a few OA susceptibility genes that have definite functional evidence and replication of association have been reported, however. Through a genome-wide association study and a replication using a total of ∼4,800 Japanese subjects, we identified two single nucleotide polymorphisms (SNPs) (rs7775228 and rs10947262) associated with susceptibility to knee OA. The two SNPs were in a region containing HLA class II/III genes and their association reached genome-wide significance (combined P = 2.43×10−8 for rs7775228 and 6.73×10−8 for rs10947262). Our results suggest that immunologic mechanism is implicated in the etiology of OA.
Developmental Dynamics | 2005
Kang-Young Choi; Hyun Jung Kim; Mi-Hye Lee; Tae-Geon Kwon; Hyun-Duck Nah; Tatsuya Furuichi; Toshihisa Komori; Soon-Hyeun Nam; Young-Jin Kim; Hyun-Mo Ryoo
Calvarial bone is formed by the intramembranous bone‐forming process, which involves many signaling molecules. The constitutive activation of the fibroblast growth factor (FGF) signaling pathway accelerates osteoblast differentiation and results in premature cranial suture closure. Bone morphogenetic protein (BMP) signaling pathways, which involve the downstream transcription factors Dlx5 and Msx2, are also involved in the bone‐forming processes. However, the relationships between these two main signaling cascades are still unclear. We found that FGF2 treatment of developing bone fronts stimulated Bmp2 gene expression but that BMP2 treatment could not induce Fgf2 expression. Moreover, the disruption of the Runx2 gene completely eliminated the expression of Bmp2 and its downstream genes Dlx5 and Msx2 in the developing primordium of bone, while the expression of Fgf2 was maintained. In addition, cultured Runx2−/− cells expressed very low baseline levels of Bmp2 that were up‐regulated by transfection with a Runx2‐expressing plasmid. These levels in turn were markedly elevated by FGF2 treatment. FGF2 treatment also strongly enhanced the Bmp2 expression in MC3T3‐E1 cells, whose endogenous Runx2 gene is intact and which express Bmp2 at low baseline levels as well. These results indicate that Runx2 is an important mediator of the expression of Bmp2 in response to FGF stimulation in cranial bone development. Developmental Dynamics 233:115–121, 2005.