Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Tatsuya Kibe is active.

Publication


Featured researches published by Tatsuya Kibe.


Molecular and Cellular Biology | 2009

Functional Dissection of Human and Mouse POT1 Proteins

Wilhelm Palm; Dirk Hockemeyer; Tatsuya Kibe; Titia de Lange

ABSTRACT The single-stranded telomeric DNA binding protein POT1 protects mammalian chromosome ends from the ATR-dependent DNA damage response, regulates telomerase-mediated telomere extension, and limits 5′-end resection at telomere termini. Whereas most mammals have a single POT1 gene, mice have two POT1 proteins that are functionally distinct. POT1a represses the DNA damage response, and POT1b controls 5′-end resection. In contrast, as we report here, POT1a and POT1b do not differ in their ability to repress telomere recombination. By swapping domains, we show that the DNA binding domain of POT1a specifies its ability to repress the DNA damage response. However, no differences were detected in the in vitro DNA binding features of POT1a and POT1b. In contrast to the repression of ATR signaling by POT1a, the ability of POT1b to control 5′-end resection was found to require two regions in the C terminus, one corresponding to the TPP1 binding domain and a second representing a new domain located between amino acids (aa) 300 and 350. Interestingly, the DNA binding domain of human POT1 can replace that of POT1a to repress ATR signaling, and the POT1b region from aa 300 to 350 required for the regulation of the telomere terminus is functionally conserved in human POT1. Thus, human POT1 combines the features of POT1a and POT1b.


Molecular and Cellular Biology | 2010

Telomere Protection by TPP1 Is Mediated by POT1a and POT1b

Tatsuya Kibe; Gail A. Osawa; Catherine E. Keegan; Titia de Lange

ABSTRACT Mammalian telomeres are protected by the shelterin complex, which contains single-stranded telomeric DNA binding proteins (POT1a and POT1b in rodents, POT1 in other mammals). Mouse POT1a prevents the activation of the ATR kinase and contributes to the repression of the nonhomologous end-joining pathway (NHEJ) at newly replicated telomeres. POT1b represses unscheduled resection of the 5′-ended telomeric DNA strand, resulting in long 3′ overhangs in POT1b KO cells. Both POT1 proteins bind TPP1, forming heterodimers that bind to other proteins in shelterin. Short hairpin RNA (shRNA)-mediated depletion had previously demonstrated that TPP1 contributes to the normal function of POT1a and POT1b. However, these experiments did not establish whether TPP1 has additional functions in shelterin. Here we report on the phenotypes of the conditional deletion of TPP1 from mouse embryo fibroblasts. TPP1 deletion resulted in the release of POT1a and POT1b from chromatin and loss of these proteins from telomeres, indicating that TPP1 is required for the telomere association of POT1a and POT1b but not for their stability. The telomere dysfunction phenotypes associated with deletion of TPP1 were identical to those of POT1a/POT1b DKO cells. No additional telomere dysfunction phenotypes were observed, establishing that the main role of TPP1 is to allow POT1a and POT1b to protect chromosome ends.


Molecular and Cellular Biology | 2004

Fission yeast Dna2 is required for generation of the telomeric single-strand overhang

Kazunori Tomita; Tatsuya Kibe; Hoyoung Kang; Yeon-Soo Seo; Masahiro Uritani; Takashi Ushimaru; Masaru Ueno

ABSTRACT It has been suggested that the Schizosaccharomyces pombe Rad50 (Rad50-Rad32-Nbs1) complex is required for the resection of the C-rich strand at telomere ends in taz1-d cells. However, the nuclease-deficient Rad32-D25A mutant can still resect the C-rich strand, suggesting the existence of a nuclease that resects the C-rich strand. Here, we demonstrate that a taz1-d dna2-2C double mutant lost the G-rich overhang at a semipermissive temperature. The amount of G-rich overhang in S phase in the dna2-C2 mutant was lower than that in wild-type cells at the semipermissive temperature. Dna2 bound to telomere DNA in a chromatin immunoprecipitation assay. Moreover, telomere length decreased with each generation after shift of the dna2-2C mutant to the semipermissive temperature. These results suggest that Dna2 is involved in the generation of G-rich overhangs in both wild-type cells and taz1-d cells. The dna2-C2 mutant was not gamma ray sensitive at the semipermissive temperature, suggesting that the ability to process double-strand break (DSB) ends was not affected in the dna2-C2 mutant. Our results reveal that DSB ends and telomere ends are processed by different mechanisms.


Genes & Development | 2014

TRF1 negotiates TTAGGG repeat-associated replication problems by recruiting the BLM helicase and the TPP1/POT1 repressor of ATR signaling

Michal Zimmermann; Tatsuya Kibe; Shaheen Kabir; Titia de Lange

The semiconservative replication of telomeres is facilitated by the shelterin component TRF1. Without TRF1, replication forks stall in the telomeric repeats, leading to ATR kinase signaling upon S-phase progression, fragile metaphase telomeres that resemble the common fragile sites (CFSs), and the association of sister telomeres. In contrast, TRF1 does not contribute significantly to the end protection functions of shelterin. We addressed the mechanism of TRF1 action using mouse conditional knockouts of BLM, TRF1, TPP1, and Rap1 in combination with expression of TRF1 and TIN2 mutants. The data establish that TRF1 binds BLM to facilitate lagging but not leading strand telomeric DNA synthesis. As the template for lagging strand telomeric DNA synthesis is the TTAGGG repeat strand, TRF1-bound BLM is likely required to remove secondary structures formed by these sequences. In addition, the data establish that TRF1 deploys TIN2 and the TPP1/POT1 heterodimers in shelterin to prevent ATR during telomere replication and repress the accompanying sister telomere associations. Thus, TRF1 uses two distinct mechanisms to promote replication of telomeric DNA and circumvent the consequences of replication stress. These data are relevant to the expression of CFSs and provide insights into TIN2, which is compromised in dyskeratosis congenita (DC) and related disorders.


Bioscience, Biotechnology, and Biochemistry | 2010

Expression of mutant RPA in human cancer cells causes telomere shortening.

Yuka Kobayashi; Koichiro Sato; Tatsuya Kibe; Hiroyuki Seimiya; Asako J. Nakamura; Masashi Yukawa; Eiko Tsuchiya; Masaru Ueno

Replication protein A (RPA) binds to single-stranded DNA generated during DNA replication and other processes. The roles of RPA in telomere maintenance have been demonstrated in yeasts, but not in telomerase-positive human cells. In this study, we found that expression of mutant RPA70 in human cells caused telomere shortening, suggesting that RPA is required for telomere-length regulation in human cancer cells.


Molecular and Cellular Biology | 2011

Fission Yeast Pot1 and RecQ Helicase Are Required for Efficient Chromosome Segregation

Katsunori Takahashi; Ryota Imano; Tatsuya Kibe; Hiroyuki Seimiya; Yukiko Muramatsu; Naoki Kawabata; Genki Tanaka; Yoshitake Matsumoto; Taisuke Hiromoto; Yuka Koizumi; Norihiko Nakazawa; Mitsuhiro Yanagida; Masashi Yukawa; Eiko Tsuchiya; Masaru Ueno

ABSTRACT Pot1 is a single-stranded telomere-binding protein that is conserved from fission yeast to mammals. Deletion of Schizosaccharomyces pombe pot1+ causes immediate telomere loss. S. pombe Rqh1 is a homolog of the human RecQ helicase WRN, which plays essential roles in the maintenance of genomic stability. Here, we demonstrate that a pot1Δ rqh1-hd (helicase-dead) double mutant maintains telomeres that are dependent on Rad51-mediated homologous recombination. Interestingly, the pot1Δ rqh1-hd double mutant displays a “cut” (cell untimely torn) phenotype and is sensitive to the antimicrotubule drug thiabendazole (TBZ). Moreover, the chromosome ends of the double mutant do not enter the pulsed-field electrophoresis gel. These results suggest that the entangled chromosome ends in the pot1Δ rqh1-hd double mutant inhibit chromosome segregation, signifying that Pot1 and Rqh1 are required for efficient chromosome segregation. We also found that POT1 knockdown, WRN-deficient human cells are sensitive to the antimicrotubule drug vinblastine, implying that some of the functions of S. pombe Pot1 and Rqh1 may be conserved in their respective human counterparts POT1 and WRN.


Nature | 2018

53BP1-RIF1-shieldin counteracts DSB resection through CST- and Polα-dependent fill-in

Zachary Mirman; Francisca Lottersberger; Hiroyuki Takai; Tatsuya Kibe; Yi Gong; Kaori K. Takai; Alessandro Bianchi; Michal Zimmermann; Daniel Durocher; Titia de Lange

In DNA repair, the resection of double-strand breaks dictates the choice between homology-directed repair—which requires a 3′ overhang—and classical non-homologous end joining, which can join unresected ends1,2. BRCA1-mutant cancers show minimal resection of double-strand breaks, which renders them deficient in homology-directed repair and sensitive to inhibitors of poly(ADP-ribose) polymerase 1 (PARP1)3–8. When BRCA1 is absent, the resection of double-strand breaks is thought to be prevented by 53BP1, RIF1 and the REV7–SHLD1–SHLD2–SHLD3 (shieldin) complex, and loss of these factors diminishes sensitivity to PARP1 inhibitors4,6–9. Here we address the mechanism by which 53BP1–RIF1–shieldin regulates the generation of recombinogenic 3′ overhangs. We report that CTC1–STN1–TEN1 (CST)10, a complex similar to replication protein A that functions as an accessory factor of polymerase-α (Polα)–primase11, is a downstream effector in the 53BP1 pathway. CST interacts with shieldin and localizes with Polα to sites of DNA damage in a 53BP1- and shieldin-dependent manner. As with loss of 53BP1, RIF1 or shieldin, the depletion of CST leads to increased resection. In BRCA1-deficient cells, CST blocks RAD51 loading and promotes the efficacy of PARP1 inhibitors. In addition, Polα inhibition diminishes the effect of PARP1 inhibitors. These data suggest that CST–Polα-mediated fill-in helps to control the repair of double-strand breaks by 53BP1, RIF1 and shieldin.53BP1 and shieldin recruit the CTC1–STN1–TEN1 complex and polymerase-α to sites of DNA damage to help control the repair of double-strand breaks.


Molecular Cell | 2011

Telomere Protection by TPP1/POT1 Requires Tethering to TIN2

Kaori K. Takai; Tatsuya Kibe; Jill R. Donigian; David Frescas; Titia de Lange


Molecular Biology of the Cell | 2007

Fission yeast Taz1 and RPA are synergistically required to prevent rapid telomere loss.

Tatsuya Kibe; Yuuki Ono; Koichiro Sato; Masaru Ueno


Nucleic Acids Research | 2003

Fission yeast Rhp51 is required for the maintenance of telomere structure in the absence of the Ku heterodimer

Tatsuya Kibe; Kazunori Tomita; Akira Matsuura; Daisuke Izawa; Tsutomu Kodaira; Takashi Ushimaru; Masahiro Uritani; Masaru Ueno

Collaboration


Dive into the Tatsuya Kibe's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Hiroyuki Seimiya

Japanese Foundation for Cancer Research

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge