Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Tatsuya Tominaga is active.

Publication


Featured researches published by Tatsuya Tominaga.


Journal of Biological Chemistry | 2011

Activation of Bone Morphogenetic Protein 4 Signaling Leads to Glomerulosclerosis That Mimics Diabetic Nephropathy

Tatsuya Tominaga; Hideharu Abe; Otoya Ueda; Chisato Goto; Kunihiko Nakahara; Taichi Murakami; Takeshi Matsubara; Akira Mima; Kojiro Nagai; Toshikazu Araoka; Seiji Kishi; Naoshi Fukushima; Kou-ichi Jishage; Toshio Doi

Diabetic nephropathy (DN) is the most common cause of chronic kidney disease. We have previously reported that Smad1 transcriptionally regulates the expression of extracellular matrix (ECM) proteins in DN. However, little is known about the regulatory mechanisms that induce and activate Smad1. Here, bone morphogenetic protein 4 (Bmp4) was found to up-regulate the expression of Smad1 in mesangial cells and subsequently to phosphorylate Smad1 downstream of the advanced glycation end product-receptor for advanced glycation end product signaling pathway. Moreover, Bmp4 utilized Alk3 and affected the activation of Smad1 and Col4 expressions in mesangial cells. In the diabetic mouse, Bmp4 was remarkably activated in the glomeruli, and the mesangial area was expanded. To elucidate the direct function of Bmp4 action in the kidneys, we generated transgenic mice inducible for the expression of Bmp4. Tamoxifen treatment dramatically induced the expression of Bmp4, especially in the glomeruli of the mice. Notably, in the nondiabetic condition, the mice exhibited not only an expansion of the mesangial area and thickening of the basement membrane but also remarkable albuminuria, which are consistent with the distinct glomerular injuries in DN. ECM protein overexpression and activation of Smad1 in the glomeruli were also observed in the mice. The mesangial expansion in the mice was significantly correlated with albuminuria. Furthermore, the heterozygous Bmp4 knock-out mice inhibited the glomerular injuries compared with wild type mice in diabetic conditions. Here, we show that BMP4 may act as an upstream regulatory molecule for the process of ECM accumulation in DN and thereby reveals a new aspect of the molecular mechanisms involved in DN.


Diabetes | 2008

Urinary Smad1 is a novel marker to predict later onset of mesangial matrix expansion in diabetic nephropathy

Akira Mima; Hidenori Arai; Takeshi Matsubara; Hideharu Abe; Kojiro Nagai; Yukinori Tamura; Kazuo Torikoshi; Makoto Araki; Hiroshi Kanamori; Toshikazu Takahashi; Tatsuya Tominaga; Motokazu Matsuura; Noriyuki Iehara; Atsushi Fukatsu; Toru Kita; Toshio Doi

OBJECTIVE—We reported that Smad1 is a key transcriptional factor for mesangial matrix expansion in diabetic nephropathy. In this study, we examined whether urinary Smad1 in an early phase of diabetes can predict later development of glomerulosclerosis in diabetic nephropathy and how an angiotensin II type 1 receptor blocker (ARB) can modulate structural changes and urinary markers. RESEARCH DESIGN AND METHODS—Smad1 and albumin in the urine were examined 4 weeks after injection of streptozotocin in 48 rats or 6 weeks of diabetes in db/db mice. Their renal pathology was analyzed after 20 weeks in rats or 12 weeks in mice. Among 48 diabetic rats 7 rats were treated with olmesartan for 20 weeks. RESULTS—Urinary Smad1 of diabetic rats at 4 weeks was nicely correlated with mesangial matrix expansion at 24 weeks (r = 0.70, P < 0.001), while albuminuria showed a weaker association (r = 0.31, P = 0.043). Olmesartan treatment significantly ameliorated glomerulosclerosis and dramatically decreased urinary Smad1 (from 3.9 ± 2.9 to 0.3 ± 0.3 ng/mg creatinine, P < 0.05). In db/db mice, urinary Smad1 at 6 weeks was also significantly correlated with mesangial expansion at 18 weeks. In contrast, there was no change in urinary Smad1 in control diabetic rats or mice. CONCLUSIONS—The increase of urinary Smad1 in the early stages of diabetes is correlated with later development of glomerulosclerosis in two rodent models. These data indicate that urinary Smad1 could be a novel predictor for later onset of morphological changes and can be used to monitor the effect of ARBs in diabetic nephropathy.


BMC Nephrology | 2009

Risk factors for chronic kidney disease in Japan: a community-based study.

Norimichi Takamatsu; Hideharu Abe; Tatsuya Tominaga; Kunihiko Nakahara; Yumi Ito; Yoko Okumoto; Jiyoong Kim; Masafumi Kitakaze; Toshio Doi

BackgroundChronic kidney disease (CKD) is increasingly being recognized as a predictor for both end-stage renal disease and cardiovascular disease. The present study, conducted on individuals from a community in Arita, Japan, was designed to evaluate biomarkers that can be used to determine the associated factors for CKD.MethodsThis study involved 1554 individuals. Kidney function was evaluated in terms of the creatinine-based estimated glomerular filtration rate (eGFR), which was determined using the Modification of Diet in Renal Disease equation. Low eGFR was defined as eGFR < 60 mL/min per 1.73 m2. The concentration of both urinary albumin and urinary type IV collagen were measured.ResultsIn the younger participants (age, <65 years), the odds ratio (95% confidence interval [CI]) of low eGFR was 1.17 (1.02 to 1.34) for each 1 year older age, 6.28 (1.41 to 28.03) for urinary albumin creatinine ratio (ACR) over 17.9 mg/g and 9.43 (2.55 to 34.91) for hyperlipidemia. On the other hand, among the elderly participants (age, ≥ 65 years), the odds ratio (95% CI) of low eGFR was 2.97 (1.33 to 6.62) for gender, 1.62 (1.06 to 2.50) for hypertension and 1.97 (1.19 to 3.28) for hyperlipidemia. Urinary type IV collagen creatinine ratio was not identified as an associated factor for low eGFR.ConclusionIn this present cross-sectional community-based study, ACR is associated with CKD, which was defined as an eGFR of less than 60 mL/min per 1.73 m2, in the younger participants but not in the older participants.


PLOS ONE | 2011

Activation of Src mediates PDGF-induced Smad1 phosphorylation and contributes to the progression of glomerulosclerosis in glomerulonephritis.

Akira Mima; Hideharu Abe; Kojiro Nagai; Hidenori Arai; Takeshi Matsubara; Makoto Araki; Kazuo Torikoshi; Tatsuya Tominaga; Noriyuki Iehara; Atsushi Fukatsu; Toru Kita; Toshio Doi

Platelet-derived growth factor (PDGF) plays critical roles in mesangial cell (MC) proliferation in mesangial proliferative glomerulonephritis. We showed previously that Smad1 contributes to PDGF-dependent proliferation of MCs, but the mechanism by which Smad1 is activated by PDGF is not precisely known. Here we examined the role of c-Src tyrosine kinase in the proliferative change of MCs. Experimental mesangial proliferative glomerulonephritis (Thy1 GN) was induced by a single intravenous injection of anti-rat Thy-1.1 monoclonal antibody. In Thy1 GN, MC proliferation and type IV collagen (Col4) expression peaked on day 6. Immunohistochemical staining for the expression of phospho-Src (pSrc), phospho-Smad1 (pSmad1), Col4, and smooth muscle α-actin (SMA) revealed that the activation of c-Src and Smad1 signals in glomeruli peaked on day 6, consistent with the peak of mesangial proliferation. When treated with PP2, a Src inhibitor, both mesangial proliferation and sclerosis were significantly reduced. PP2 administration also significantly reduced pSmad1, Col4, and SMA expression. PDGF induced Col4 synthesis in association with increased expression of pSrc and pSmad1 in cultured MCs. In addition, PP2 reduced Col4 synthesis along with decreased pSrc and pSmad1 protein expression in vitro. Moreover, the addition of siRNA against c-Src significantly reduced the phosphorylation of Smad1 and the overproduction of Col4. These results provide new evidence that the activation of Src/Smad1 signaling pathway plays a key role in the development of glomerulosclerosis in experimental glomerulonephritis.


Journal of Biological Chemistry | 2011

SOX9 protein induces a chondrogenic phenotype of mesangial cells and contributes to advanced diabetic nephropathy.

Seiji Kishi; Hideharu Abe; Haruhiko Akiyama; Tatsuya Tominaga; Taichi Murakami; Akira Mima; Kojiro Nagai; Fumi Kishi; Motokazu Matsuura; Takeshi Matsubara; Noriyuki Iehara; Otoya Ueda; Naoshi Fukushima; Kou-ichi Jishage; Toshio Doi

Diabetic nephropathy (DN) is the most important chronic kidney disease. We previously reported that Smad1 transcriptionally regulates the expression of extracellular matrix in DN. Phenotypic change in mesangial cells (MCs) is a key pathologic event in the progression of DN. The aim of this study is to investigate a novel mechanism underlying chondrogenic phenotypic change in MCs that results in the development of DN. MCs showed chondrogenic potential in a micromass culture, and BMP4 induced the expression of chondrocyte markers (SRY-related HMG Box 9 (SOX9) and type II collagen (COL2)). Advanced glycation end products induced the expression of chondrocyte marker proteins downstream from the BMP4-Smad1 signaling pathway in MCs. In addition, hypoxia also induced the expression of BMP4, hypoxia-inducible factor-1α (HIF-1α), and chondrocyte markers. Overexpression of SOX9 caused ectopic expression of proteoglycans and COL2 in MCs. Furthermore, forced expression of Smad1 induced chondrocyte markers as well. Dorsomorphin inhibited these inductions. Glomerular expressions of HIF-1α, BMP4, and chondrocyte markers were observed in diabetic nephropathy mice. These positive stainings were observed in mesangial sclerotic lesions. SOX9 was partially colocalized with HIF-1α and BMP4 in diabetic glomeruli. BMP4 knock-in transgenic mice showed not only similar pathological lesions to DN, but also the induction of chondrocyte markers in the sclerotic lesions. Here we demonstrate that HIF-1α and BMP4 induce SOX9 expression and subsequent chondrogenic phenotype change in DN. The results suggested that the transdifferentiation of MCs into chondrocyte-like cells in chronic hypoxic stress may result in irreversible structural change in DN.


Journal of Biological Chemistry | 2012

Scleraxis modulates bone morphogenetic protein 4 (BMP4)-Smad1 protein-smooth muscle α-actin (SMA) signal transduction in diabetic nephropathy.

Hideharu Abe; Tatsuya Tominaga; Takeshi Matsubara; Naoko Abe; Seiji Kishi; Kojiro Nagai; Taichi Murakami; Toshikazu Araoka; Toshio Doi

Background: Activated mesangial cells exhibit SMA and contribute to the progression of diabetic nephropathy. Results: Scleraxis negatively regulated the AGE-induced expression and secretion of BMP4. Conclusion: Scleraxis and Id1 are involved in the BMP4-SMA pathway and modulate phenotypic changes. Significance: Deeper insight into the impact of regulatory mechanism of scleraxis-BMP4-Smad1 signal activation might help to prevent diabetic glomerular damage. Activation of mesangial cells (MCs), which is characterized by induction of smooth muscle α-actin (SMA) expression, contributes to a key event in various renal diseases; however, the mechanisms controlling MC differentiation are still largely undefined. Activated Smad1 induced SMA in a dose-dependent manner in MCs. As a direct regulating molecule for SMA, we identified and characterized scleraxis (Scx) as a new phenotype modulator in advanced glycation end product (AGE)-exposed MCs. Scx physically associated with E12 and bound the E-box in the promoter of SMA and negatively regulated the AGE-induced SMA expression. Scx induced expression and secretion of bone morphogenetic protein 4 (BMP4), thereby controlling the Smad1 activation in AGE-treated MCs. In diabetic mice, Scx was concomitantly expressed with SMA in the glomeruli. Inhibitor of differentiation 1 (Id1) was further induced by extended treatment with AGE, thereby dislodging Scx from the SMA promoter. These data suggest that Scx and Id1 are involved in the BMP4-Smad1-SMA signal transduction pathway besides the TGFβ1-Smad1-SMA signaling pathway and modulate phenotypic changes in MCs in diabetic nephropathy.


Diabetes | 2015

Bone morphogenetic protein 4 and Smad1 mediate extracellular matrix production in the development of diabetic nephropathy

Takeshi Matsubara; Makoto Araki; Hideharu Abe; Otoya Ueda; Kou-ichi Jishage; Akira Mima; Chisato Goto; Tatsuya Tominaga; Masahiko Kinosaki; Seiji Kishi; Kojiro Nagai; Noriyuki Iehara; Naoshi Fukushima; Toru Kita; Hidenori Arai; Toshio Doi

Diabetic nephropathy is the leading cause of end-stage renal disease. It is pathologically characterized by the accumulation of extracellular matrix in the mesangium, of which the main component is α1/α2 type IV collagen (Col4a1/a2). Recently, we identified Smad1 as a direct regulator of Col4a1/a2 under diabetic conditions in vitro. Here, we demonstrate that Smad1 plays a key role in diabetic nephropathy through bone morphogenetic protein 4 (BMP4) in vivo. Smad1-overexpressing mice (Smad1-Tg) were established, and diabetes was induced by streptozotocin. Nondiabetic Smad1-Tg did not exhibit histological changes in the kidney; however, the induction of diabetes resulted in an ∼1.5-fold greater mesangial expansion, consistent with an increase in glomerular phosphorylated Smad1. To address regulatory factors of Smad1, we determined that BMP4 and its receptor are increased in diabetic glomeruli and that diabetic Smad1-Tg and wild-type mice treated with a BMP4-neutralizing antibody exhibit decreased Smad1 phosphorylation and ∼40% less mesangial expansion than those treated with control IgG. Furthermore, heterozygous Smad1 knockout mice exhibit attenuated mesangial expansion in the diabetic condition. The data indicate that BMP4/Smad1 signaling is a critical cascade for the progression of mesangial expansion and that blocking this signal could be a novel therapeutic strategy for diabetic nephropathy.


Diabetes Research and Clinical Practice | 2008

The current clinical problems for early phase of diabetic nephropathy and approach for pathogenesis of diabetic nephropathy

Toshio Doi; Akira Mima; Takeshi Matsubara; Tatsuya Tominaga; Hidenori Arai; Hideharu Abe

The important clinical problems of diabetic nephropathy are both proteinuria and decrease of renal function. Pathological analysis showed decrease of GFR was correlated to degree of mesangial expansion but not thickening of GBM nor the other findings in human type 1 diabetic nephropathy. From the perspective in renal dysfunction, mesangial matrix expansion was crucial for diabetic nephropathy. However, there was no difference of mesangial expansion between normal and microalbuminuria stage in type 1 and 2 diabetes mellitus (DM). On the other hand, microalbuminuria definitely shows a key related factor for cardiovascular events, but it does not indicate a clear interaction for glomerulosclerosis. We need to search a new clinical marker for renal injury. We have first shown that Smad1 is a transcription factor for alpha1 and 2 of type 4 collagen (Col4), which is a major component of glomerulosclerosis. We have also identified Smad1 is a critical responsible molecule for developing glomerulosclerosis in rat diabetic nephropathy. We have found the good correlation between glomerulosclerosis and urinary Smad1 but not between glomerulosclerosis and urine albumin. These data suggests that urine Smad1 is a promising clinical marker for underlying glomerular damages in early stage diabetic nephropathy. The study also implicates that angiotensin II (AngII)-Src-Smad1 signaling pathway has played a key role for development of diabetic nephropathy. These suggest that it is necessary to clarify the whole mechanism related to Smad1 to identify the pathogenesis of diabetic nephropathy.


Journal of Biological Chemistry | 2016

Transcriptional and Translational Modulation of myo-Inositol Oxygenase (Miox) by Fatty Acids: IMPLICATIONS IN RENAL TUBULAR INJURY INDUCED IN OBESITY AND DIABETES.

Tatsuya Tominaga; Rajesh K. Dutta; Darukeshwara Joladarashi; Toshio Doi; Janardan K. Reddy; Yashpal S. Kanwar

The kidney is one of the target organs for various metabolic diseases, including diabetes, metabolic syndrome, and obesity. Most of the metabolic studies underscore glomerular pathobiology, although the tubulo-interstitial compartment has been underemphasized. This study highlights mechanisms concerning the pathobiology of tubular injury in the context of myo-inositol oxygenase (Miox), a tubular enzyme. The kidneys of mice fed a high fat diet (HFD) had increased Miox expression and activity, and the latter was related to phosphorylation of serine/threonine residues. Also, expression of sterol regulatory element-binding protein1 (Srebp1) and markers of cellular/nuclear damage was increased along with accentuated apoptosis and loss of tubular brush border. Similar results were observed in cells treated with palmitate/BSA. Multiple sterol-response elements and E-box motifs were found in the miox promoter, and its activity was modulated by palmitate/BSA. Electrophoretic mobility and ChIP assays confirmed binding of Srebp to consensus sequences of the miox promoter. Exposure of palmitate/BSA-treated cells to rapamycin normalized Miox expression and prevented Srebp1 nuclear translocation. In addition, rapamycin treatment reduced p53 expression and apoptosis. Like rapamycin, srebp siRNA reduced Miox expression. Increased expression of Miox was associated with the generation of reactive oxygen species (ROS) in kidney tubules of mice fed an HFD and cell exposed to palmitate/BSA. Both miox and srebp1 siRNAs reduced generation of ROS. Collectively, these findings suggest that HFD or fatty acids modulate transcriptional, translational, and post-translational regulation of Miox expression/activity and underscore Miox being a novel target of the transcription factor Srebp1. Conceivably, activation of the mTORC1/Srebp1/Miox pathway leads to the generation of ROS culminating into tubulo-interstitial injury in states of obesity.


PLOS ONE | 2013

Dual involvement of growth arrest-specific gene 6 in the early phase of human IgA nephropathy.

Kojiro Nagai; Masashi Miyoshi; Takei Kake; Naoshi Fukushima; Motokazu Matsuura; Eriko Shibata; Satoshi Yamada; Kazuhiro Yoshikawa; Hiro-omi Kanayama; Tomoya Fukawa; Kunihisa Yamaguchi; Hirofumi Izaki; Akira Mima; Naoko Abe; Toshikazu Araoka; Taichi Murakami; Fumi Kishi; Seiji Kishi; Tatsuya Tominaga; Tatsumi Moriya; Hideharu Abe; Toshio Doi

Background Gas6 is a growth factor that causes proliferation of mesangial cells in the development of glomerulonephritis. Gas6 can bind to three kinds of receptors; Axl, Dtk, and Mer. However, their expression and functions are not entirely clear in the different glomerular cell types. Meanwhile, representative cell cycle regulatory protein p27 has been reported to be expressed in podocytes in normal glomeruli with decreased expression in proliferating glomeruli, which inversely correlated with mesangial proliferation in human IgA nephropathy (IgAN). Methods The aim of this study is to clarify Gas6 involvement in the progression of IgAN. Expression of Gas6/Axl/Dtk was examined in 31 biopsy proven IgAN cases. We compared the expression levels with histological severity or clinical data. Moreover, we investigated the expression of Gas6 and its receptors in cultured podocytes. Results In 28 of 31 cases, Gas6 was upregulated mainly in podocytes. In the other 3 cases, Gas6 expression was induced in endothelial and mesangial cells, which was similar to animal nephritis models. Among 28 podocyte type cases, the expression level of Gas6 correlated with the mesangial hypercellularity score of IgAN Oxford classification and urine protein excretion. It also inversely correlated with p27 expression in glomeruli. As for the receptors, Axl was mainly expressed in endothelial and mesangial cells, while Dtk was expressed in podocytes. In vitro, Dtk was expressed in cultured murine podocytes, and the expression of p27 was decreased by Gas6 stimulation. Conclusions Gas6 was uniquely upregulated in either endothelial/mesangial cells or podocytes in IgAN. The expression pattern can be used as a marker to classify IgAN. Gas6 has a possibility to be involved in not only mesangial proliferation via Axl, but also podocyte injury via Dtk in IgAN.

Collaboration


Dive into the Tatsuya Tominaga's collaboration.

Top Co-Authors

Avatar

Toshio Doi

University of Tokushima

View shared research outputs
Top Co-Authors

Avatar

Hideharu Abe

University of Tokushima

View shared research outputs
Top Co-Authors

Avatar

Kojiro Nagai

University of Tokushima

View shared research outputs
Top Co-Authors

Avatar

Seiji Kishi

University of Tokushima

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge