Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Tatum D. Mortimer is active.

Publication


Featured researches published by Tatum D. Mortimer.


PLOS ONE | 2013

A Novel Nonhuman Primate Model for Influenza Transmission

Louise H. Moncla; Ted M. Ross; Jorge M. Dinis; Jason T. Weinfurter; Tatum D. Mortimer; Nancy Schultz-Darken; Kevin Brunner; Saverio Capuano; Carissa Boettcher; Jennifer Post; Michael R. Johnson; Chalise E. Bloom; Andrea M. Weiler; Thomas C. Friedrich

Studies of influenza transmission are necessary to predict the pandemic potential of emerging influenza viruses. Currently, both ferrets and guinea pigs are used in such studies, but these species are distantly related to humans. Nonhuman primates (NHP) share a close phylogenetic relationship with humans and may provide an enhanced means to model the virological and immunological events in influenza virus transmission. Here, for the first time, it was demonstrated that a human influenza virus isolate can productively infect and be transmitted between common marmosets (Callithrix jacchus), a New World monkey species. We inoculated four marmosets with the 2009 pandemic virus A/California/07/2009 (H1N1pdm) and housed each together with a naïve cage mate. We collected bronchoalveolar lavage and nasal wash samples from all animals at regular intervals for three weeks post-inoculation to track virus replication and sequence evolution. The unadapted 2009 H1N1pdm virus replicated to high titers in all four index animals by 1 day post-infection. Infected animals seroconverted and presented human-like symptoms including sneezing, nasal discharge, labored breathing, and lung damage. Transmission occurred in one cohabitating pair. Deep sequencing detected relatively few genetic changes in H1N1pdm viruses replicating in any infected animal. Together our data suggest that human H1N1pdm viruses require little adaptation to replicate and cause disease in marmosets, and that these viruses can be transmitted between animals. Marmosets may therefore be a viable model for studying influenza virus transmission.


PLOS Pathogens | 2015

Diversity of Mycobacterium tuberculosis across Evolutionary Scales

Mary B. O’Neill; Tatum D. Mortimer; Caitlin S. Pepperell

Tuberculosis (TB) is a global public health emergency. Increasingly drug resistant strains of Mycobacterium tuberculosis (M.tb) continue to emerge and spread, highlighting adaptability of this pathogen. Most studies of M.tb evolution have relied on ‘between-host’ samples, in which each person with TB is represented by a single M.tb isolate. However, individuals with TB commonly harbor populations of M.tb numbering in the billions. Here, we use analyses of M.tb genomic data from within and between hosts to gain insight into influences shaping genetic diversity of this pathogen. We find that the amount of M.tb genetic diversity harbored by individuals with TB can vary dramatically, likely as a function of disease severity. Surprisingly, we did not find an appreciable impact of TB treatment on M.tb diversity. In examining genomic data from M.tb samples within and between hosts with TB, we find that genes involved in the regulation, synthesis, and transportation of immunomodulatory cell envelope lipids appear repeatedly in the extremes of various statistical measures of diversity. Many of these genes have been identified as possible targets of selection in other studies employing different methods and data sets. Taken together, these observations suggest that M.tb cell envelope lipids are targets of selection within hosts. Many of these lipids are specific to pathogenic mycobacteria and, in some cases, human-pathogenic mycobacteria. We speculate that rapid adaptation of cell envelope lipids is facilitated by functional redundancy, flexibility in their metabolism, and their roles mediating interactions with the host.


Genome Biology and Evolution | 2014

Genomic Signatures of Distributive Conjugal Transfer among Mycobacteria

Tatum D. Mortimer; Caitlin S. Pepperell

Distributive conjugal transfer (DCT) is a newly described mechanism of lateral gene transfer (LGT) that results in a mosaic transconjugant structure, similar to the products of meiosis. We have tested popular LGT detection methods on whole-genome sequence data from experimental DCT transconjugants and used the best performing methods to compare genomic signatures of DCT with those of LGT through natural transformation, conjugative plasmids, and mobile genetic elements (MGE). We found that DCT results in transfer of larger chromosomal segments, that these segments are distributed more broadly around the chromosome, and that a greater proportion of the chromosome is affected by DCT than by other mechanisms of LGT. We used the best performing methods to characterize LGT in Mycobacterium canettii, the mycobacterial species most closely related to Mycobacterium tuberculosis. Patterns of LGT among M. canettii were highly distinctive. Gene flow appeared unidirectional, from lineages with minimal evidence of LGT to isolates with a substantial proportion (6–13%) of sites identified as recombinant. Among M. canettii isolates with evidence of LGT, recombinant fragments were larger and more evenly distributed relative to bacteria that undergo LGT through natural transformation, conjugative plasmids, and MGE. Spatial bias in M. canettii was also unusual in that patterns of recombinant fragment sharing mirrored overall phylogenetic structure. Based on the proportion of recombinant sites, the size of recombinant fragments, their spatial distribution and lack of association with MGE, as well as unidirectionality of DNA transfer, we conclude that DCT is the predominant mechanism of LGT among M. canettii.


eLife | 2017

A molecular portrait of maternal sepsis from Byzantine Troy

Alison M. Devault; Tatum D. Mortimer; Andrew Kitchen; Henrike Kiesewetter; Jacob Enk; G. Brian Golding; John Southon; Melanie Kuch; Ana T. Duggan; William Aylward; Shea N. Gardner; Jonathan E. Allen; Andrew M. King; Gerard D. Wright; Makoto Kuroda; Kengo Kato; Derek E. G. Briggs; Gino Fornaciari; Edward C. Holmes; Hendrik N. Poinar; Caitlin S. Pepperell

Pregnancy complications are poorly represented in the archeological record, despite their importance in contemporary and ancient societies. While excavating a Byzantine cemetery in Troy, we discovered calcified abscesses among a woman’s remains. Scanning electron microscopy of the tissue revealed ‘ghost cells’, resulting from dystrophic calcification, which preserved ancient maternal, fetal and bacterial DNA of a severe infection, likely chorioamnionitis. Gardnerella vaginalis and Staphylococcus saprophyticus dominated the abscesses. Phylogenomic analyses of ancient, historical, and contemporary data showed that G. vaginalis Troy fell within contemporary genetic diversity, whereas S. saprophyticus Troy belongs to a lineage that does not appear to be commonly associated with human disease today. We speculate that the ecology of S. saprophyticus infection may have differed in the ancient world as a result of close contacts between humans and domesticated animals. These results highlight the complex and dynamic interactions with our microbial milieu that underlie severe maternal infections. DOI: http://dx.doi.org/10.7554/eLife.20983.001


Genome Biology and Evolution | 2017

Evolutionary thrift: mycobacteria repurpose plasmid diversity during adaptation of type VII secretion systems

Tatum D. Mortimer; Alexandra M. Weber; Caitlin S. Pepperell

Mycobacteria have a distinct secretion system, termed type VII (T7SS), which is encoded by paralogous chromosomal loci (ESX) and associated with pathogenesis, conjugation, and metal homeostasis. Evolution of paralogous gene families is of interest because duplication is an important mechanism by which novel genes evolve, but there are potential conflicts between adaptive forces that stabilize duplications and those that enable evolution of new functions. Our objective was to delineate the adaptive forces underlying diversification of T7SS. Plasmid-borne ESX were described recently, and we found evidence that the initial duplication and divergence of ESX systems occurred on plasmids and was driven by selection for advantageous mutations. Plasmid conjugation has been linked to T7SS and type IV secretion systems (T4SS) in mycobacteria, and we discovered that T7SS and T4SS genes evolved in concert on the plasmids. We hypothesize that differentiation of plasmid ESX helps to prevent conjugation among cells harboring incompatible plasmids. Plasmid ESX appear to have been repurposed following migration to the chromosome, and there is evidence of positive selection driving further differentiation of chromosomal ESX. We hypothesize that ESX loci were initially stabilized on the chromosome by mediating their own transfer. These results emphasize the diverse adaptive paths underlying evolution of novelty, which in this case involved plasmid duplications, selection for advantageous mutations in the mobile and core genomes, migration of the loci between plasmids and chromosomes, and lateral transfer among chromosomes. We discuss further implications for the choice of model organism to study ESX functions in Mycobacterium tuberculosis.


bioRxiv | 2018

Signatures of Selection at Drug Resistance Loci in Mycobacterium tuberculosis

Tatum D. Mortimer; Alexandra M. Weber; Caitlin S. Pepperell

Mycobacterium tuberculosis, the causative agent of tuberculosis (TB), is a significant burden on global health. Antibiotic treatment imposes strong selective pressure on M. tuberculosis populations. Identifying the mutations that cause drug resistance in M. tuberculosis is important for guiding TB treatment and halting the spread of drug resistance. Whole-genome sequencing (WGS) of M. tuberculosis isolates can be used to identify novel mutations mediating drug resistance and to predict resistance patterns faster than traditional methods of drug susceptibility testing. We have used WGS from natural populations of drug-resistant M. tuberculosis to characterize effects of selection for advantageous mutations on patterns of diversity at genes involved in drug resistance. The methods developed here can be used to identify novel advantageous mutations, including new resistance loci, in M. tuberculosis and other clonal pathogens. ABSTRACT Tuberculosis (TB) is the leading cause of death by an infectious disease, and global TB control efforts are increasingly threatened by drug resistance in Mycobacterium tuberculosis. Unlike most bacteria, where lateral gene transfer is an important mechanism of resistance acquisition, resistant M. tuberculosis arises solely by de novo chromosomal mutation. Using whole-genome sequencing data from two natural populations of M. tuberculosis, we characterized the population genetics of known drug resistance loci using measures of diversity, population differentiation, and convergent evolution. We found resistant subpopulations to be less diverse than susceptible subpopulations, consistent with ongoing transmission of resistant M. tuberculosis. A subset of resistance genes (“sloppy targets”) were characterized by high diversity and multiple rare variants; we posit that a large genetic target for resistance and relaxation of purifying selection contribute to high diversity at these loci. For “tight targets” of selection, the path to resistance appeared narrower, evidenced by single favored mutations that arose numerous times in the phylogeny and segregated at markedly different frequencies in resistant and susceptible subpopulations. These results suggest that diverse genetic architectures underlie drug resistance in M. tuberculosis and that combined approaches are needed to identify causal mutations. Extrapolating from patterns observed for well-characterized genes, we identified novel candidate variants involved in resistance. The approach outlined here can be extended to identify resistance variants for new drugs, to investigate the genetic architecture of resistance, and when phenotypic data are available, to find candidate genetic loci underlying other positively selected traits in clonal bacteria. IMPORTANCE Mycobacterium tuberculosis, the causative agent of tuberculosis (TB), is a significant burden on global health. Antibiotic treatment imposes strong selective pressure on M. tuberculosis populations. Identifying the mutations that cause drug resistance in M. tuberculosis is important for guiding TB treatment and halting the spread of drug resistance. Whole-genome sequencing (WGS) of M. tuberculosis isolates can be used to identify novel mutations mediating drug resistance and to predict resistance patterns faster than traditional methods of drug susceptibility testing. We have used WGS from natural populations of drug-resistant M. tuberculosis to characterize effects of selection for advantageous mutations on patterns of diversity at genes involved in drug resistance. The methods developed here can be used to identify novel advantageous mutations, including new resistance loci, in M. tuberculosis and other clonal pathogens.


BMC Medicine | 2018

Epidemiological and genomic determinants of tuberculosis outbreaks in First Nations communities in Canada

Alexander Doroshenko; Caitlin S. Pepperell; Courtney Heffernan; Mary Lou Egedahl; Tatum D. Mortimer; Tracy M. Smith; Hailey E. Bussan; Gregory J. Tyrrell; Richard Long

BackgroundIn Canada, tuberculosis disproportionately affects foreign-born and First Nations populations. Within First Nations’ peoples, a high proportion of cases occur in association with outbreaks. Tuberculosis transmission in the context of outbreaks is thought to result from the convergence of several factors including characteristics of the cases, contacts, the environment, and the pathogen.MethodsWe examined the epidemiological and genomic determinants of two well-characterized tuberculosis outbreaks attributed to two super-spreaders among First Nations in the province of Alberta. These outbreaks were associated with two distinct DNA fingerprints (restriction fragment-length polymorphisms or RFLPs 0.0142 and 0.0728). We compared outbreak isolates with endemic isolates not spatio-temporarily linked to outbreak cases. We extracted epidemiological variables pertaining to tuberculosis cases and contacts from individual public health records and the provincial tuberculosis registry. We conducted group analyses using parametric and non-parametric statistical tests. We carried out whole-genome sequencing and bioinformatic analysis using validated protocols.ResultsWe observed differences between outbreak and endemic groups in the mean number of total and child-aged contacts and the number of contacts with new positive and converted tuberculin skin tests in all group comparisons (p < 0.05). Differences were also detected in the proportion of cases with cavitation on a chest radiograph and the mean number of close contacts in selected group comparisons (p < 0.02). A phylogenetic network analysis of whole-genome sequencing data indicated that most outbreak and endemic strains were closely related to the source case for the 0.0142 fingerprint. For the 0.0728 fingerprint, the source case haplotype was circulating among endemic cases prior to the outbreak. Genetic and temporal distances were not correlated for either RFLP 0.0142 (r2 = − 0.05) or RFLP 0.0728 (r2 = 0.09) when all isolates were analyzed.ConclusionsWe found no evidence that endemic strains acquired mutations resulting in their emergence in outbreak form. We conclude that the propagation of these outbreaks was likely driven by the combination of characteristics of the source cases, contacts, and the environment. The role of whole-genome sequencing in understanding mycobacterial evolution and in assisting public health authorities in conducting contact investigations and managing outbreaks is important and expected to grow in the future.


bioRxiv | 2017

Adaptation in a Fibronectin Binding Autolysin of Staphylococcus saprophyticus

Tatum D. Mortimer; Douglas S. Annis; Mary B. O’Neill; Lindsey L. Bohr; Tracy M. Smith; Hendrik N. Poinar; Deane F. Mosher; Caitlin S. Pepperell

Staphylococcus saprophyticus is an important cause of urinary tract infections (UTI) in women; such UTI are common, can be severe, and are associated with significant impacts to public health. In addition to being a cause of human UTI, S. saprophyticus can be found in the environment, in food, and associated with animals. After discovering that UTI strains of S. saprophyticus are for the most part closely related to each other, we sought to determine whether these strains are specially adapted to cause disease in humans. We found evidence suggesting that a mutation in the gene aas is advantageous in the context of human infection. We hypothesize that the mutation allows S. saprophyticus to survive better in the human urinary tract. These results show how bacteria found in the environment can evolve to cause disease. ABSTRACT Human-pathogenic bacteria are found in a variety of niches, including free-living, zoonotic, and microbiome environments. Identifying bacterial adaptations that enable invasive disease is an important means of gaining insight into the molecular basis of pathogenesis and understanding pathogen emergence. Staphylococcus saprophyticus, a leading cause of urinary tract infections, can be found in the environment, food, animals, and the human microbiome. We identified a selective sweep in the gene encoding the Aas adhesin, a key virulence factor that binds host fibronectin. We hypothesize that the mutation under selection (aas_2206A>C) facilitates colonization of the urinary tract, an environment where bacteria are subject to strong shearing forces. The mutation appears to have enabled emergence and expansion of a human-pathogenic lineage of S. saprophyticus. These results demonstrate the power of evolutionary genomic approaches in discovering the genetic basis of virulence and emphasize the pleiotropy and adaptability of bacteria occupying diverse niches. IMPORTANCE Staphylococcus saprophyticus is an important cause of urinary tract infections (UTI) in women; such UTI are common, can be severe, and are associated with significant impacts to public health. In addition to being a cause of human UTI, S. saprophyticus can be found in the environment, in food, and associated with animals. After discovering that UTI strains of S. saprophyticus are for the most part closely related to each other, we sought to determine whether these strains are specially adapted to cause disease in humans. We found evidence suggesting that a mutation in the gene aas is advantageous in the context of human infection. We hypothesize that the mutation allows S. saprophyticus to survive better in the human urinary tract. These results show how bacteria found in the environment can evolve to cause disease.


bioRxiv | 2017

Adaptation Of Staphylococcus saprophyticus At The Host-Pathogen Interface

Tatum D. Mortimer; Douglas S. Annis; Mary B. O'Neill; Lindsey L. Bohr; Tracy M. Smith; Hendrik N. Poinar; Deane F. Mosher; Caitlin S. Pepperell

Human-pathogenic bacteria are found in a variety of niches, including free-living, zoonotic, and microbiome environments. Identifying bacterial adaptions that enable invasive disease is an important means of gaining insight into the molecular basis of pathogenesis and understanding pathogen emergence. Staphylococcus saprophyticus, a leading cause of urinary tract infections, can be found in the environment, food, animals, and the human microbiome. We identified a selective sweep in the gene encoding the Aas adhesin, a key virulence factor that binds host fibronectin. We hypothesize that the mutation under selection (aas_2206A>C) facilitates colonization of the urinary tract, an environment where bacteria are subject to strong shearing forces. The mutation appears to have enabled emergence and expansion of a human pathogenic lineage of S. saprophyticus. These results demonstrate the power of evolutionary genomic approaches in discovering the genetic basis of virulence and emphasize the pleiotropy and adaptability of bacteria occupying diverse niches. Importance Staphylococcus saprophyticus is an important cause of urinary tract infections (UTI) in women, which are common, can be severe, and are associated with significant impacts to public health. In addition to being a cause of human UTI, S. saprophyticus can be found in the environment, in food, and associated with animals. After discovering that UTI strains of S. saprophyticus are for the most part closely related to each other, we sought to determine whether these strains are specially adapted to cause disease in humans. We found evidence suggesting that a mutation in the gene aas is advantageous in the context of human infection. We hypothesize that the mutation allows S. saprophyticus to survive better in the human urinary tract. These results show how bacteria found in the environment can evolve to cause disease.Human-pathogenic bacteria are found in a variety of niches, including free-living, zoonotic, and microbiome environments. Identifying bacterial adaptions that enable invasive disease is an important means of gaining insight into the molecular basis of pathogenesis and understanding pathogen emergence. Staphylococcus saprophyticus , a leading cause of urinary tract infections, can be found in the environment, food, animals, and the human microbiome. We identified a selective sweep in the gene encoding the Aas adhesin, a key virulence factor. The mutation under selection affects binding to host fibronectin, and we hypothesize that it facilitates colonization of the urinary tract, an environment where bacteria are subject to strong shearing forces. The mutation appears to have enabled emergence and expansion of a human pathogenic lineage of S. saprophyticus . These results demonstrate the power of evolutionary genomic approaches in discovering the genetic basis of virulence and emphasize the pleiotropy and adaptability of bacteria occupying diverse niches.


Genetics | 2016

Estimation of Gene Insertion/Deletion Rates with Missing Data

Dang Uj; Alison M. Devault; Tatum D. Mortimer; Caitlin S. Pepperell; Hendrik N. Poinar; Golding Gb

Lateral gene transfer is an important mechanism for evolution among bacteria. Here, genome-wide gene insertion and deletion rates are modeled in a maximum-likelihood framework with the additional flexibility of modeling potential missing data. The performance of the models is illustrated using simulations and a data set on gene family phyletic patterns from Gardnerella vaginalis that includes an ancient taxon. A novel application involving pseudogenization/genome reduction magnitudes is also illustrated, using gene family data from Mycobacterium spp. Finally, an R package called indelmiss is available from the Comprehensive R Archive Network at https://cran.r-project.org/package=indelmiss, with support documentation and examples.

Collaboration


Dive into the Tatum D. Mortimer's collaboration.

Top Co-Authors

Avatar

Caitlin S. Pepperell

University of Wisconsin-Madison

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Tracy M. Smith

University of Wisconsin-Madison

View shared research outputs
Top Co-Authors

Avatar

Alexandra M. Weber

University of Wisconsin-Madison

View shared research outputs
Top Co-Authors

Avatar

Deane F. Mosher

University of Wisconsin-Madison

View shared research outputs
Top Co-Authors

Avatar

Douglas S. Annis

University of Wisconsin-Madison

View shared research outputs
Top Co-Authors

Avatar

Lindsey L. Bohr

University of Wisconsin-Madison

View shared research outputs
Top Co-Authors

Avatar

Mary B. O’Neill

University of Wisconsin-Madison

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Andrea M. Weiler

University of Wisconsin-Madison

View shared research outputs
Researchain Logo
Decentralizing Knowledge