Tatum S. Simonson
University of California, San Diego
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Tatum S. Simonson.
Science | 2010
Tatum S. Simonson; Yingzhong Yang; Chad D. Huff; Haixia Yun; Ga Qin; David J. Witherspoon; Zhenzhong Bai; Felipe Lorenzo; Jinchuan Xing; Lynn B. Jorde; Josef T. Prchal; Ri Li Ge
No Genetic Vertigo Peoples living in high altitudes have adapted to their situation (see the Perspective by Storz). To identify gene regions that might have contributed to high-altitude adaptation in Tibetans, Simonson et al. (p. 72, published online 13 May) conducted a genome scan of nucleotide polymorphism comparing Tibetans, Han Chinese, and Japanese, while Yi et al. (p. 75) performed comparable analyses on the coding regions of all genes—their exomes. Both studies converged on a gene, endothelial Per-Arnt-Sim domain protein 1 (also known as hypoxia-inducible factor 2α), which has been linked to the regulation of red blood cell production. Other genes identified that were potentially under selection included adult and fetal hemoglobin and two functional candidate loci that were correlated with low hemoglobin concentration in Tibetans. Future detailed functional studies will now be required to examine the mechanistic underpinnings of physiological adaptation to high altitudes. A candidate gene approach reveals genes under selection in humans living at high altitudes. Tibetans have lived at very high altitudes for thousands of years, and they have a distinctive suite of physiological traits that enable them to tolerate environmental hypoxia. These phenotypes are clearly the result of adaptation to this environment, but their genetic basis remains unknown. We report genome-wide scans that reveal positive selection in several regions that contain genes whose products are likely involved in high-altitude adaptation. Positively selected haplotypes of EGLN1 and PPARA were significantly associated with the decreased hemoglobin phenotype that is unique to this highland population. Identification of these genes provides support for previously hypothesized mechanisms of high-altitude adaptation and illuminates the complexity of hypoxia-response pathways in humans.
PLOS ONE | 2007
Matthew N. Van Ert; W. Ryan Easterday; Lynn Y. Huynh; Richard T. Okinaka; Martin Hugh-Jones; Jacques Ravel; Shaylan Zanecki; Talima Pearson; Tatum S. Simonson; Jana M. U'Ren; Sergey Kachur; Rebecca R. Leadem-Dougherty; Shane D. Rhoton; Guenevier Zinser; Jason Farlow; Pamala R. Coker; Kimothy L. Smith; Bingxiang Wang; Leo J. Kenefic; Claire M. Fraser-Liggett; David M. Wagner; Paul Keim
Anthrax, caused by the bacterium Bacillus anthracis, is a disease of historical and current importance that is found throughout the world. The basis of its historical transmission is anecdotal and its true global population structure has remained largely cryptic. Seven diverse B. anthracis strains were whole-genome sequenced to identify rare single nucleotide polymorphisms (SNPs), followed by phylogenetic reconstruction of these characters onto an evolutionary model. This analysis identified SNPs that define the major clonal lineages within the species. These SNPs, in concert with 15 variable number tandem repeat (VNTR) markers, were used to subtype a collection of 1,033 B. anthracis isolates from 42 countries to create an extensive genotype data set. These analyses subdivided the isolates into three previously recognized major lineages (A, B, and C), with further subdivision into 12 clonal sub-lineages or sub-groups and, finally, 221 unique MLVA15 genotypes. This rare genomic variation was used to document the evolutionary progression of B. anthracis and to establish global patterns of diversity. Isolates in the A lineage are widely dispersed globally, whereas the B and C lineages occur on more restricted spatial scales. Molecular clock models based upon genome-wide synonymous substitutions indicate there was a massive radiation of the A lineage that occurred in the mid-Holocene (3,064–6,127 ybp). On more recent temporal scales, the global population structure of B. anthracis reflects colonial-era importation of specific genotypes from the Old World into the New World, as well as the repeated industrial importation of diverse genotypes into developed countries via spore-contaminated animal products. These findings indicate humans have played an important role in the evolution of anthrax by increasing the proliferation and dispersal of this now global disease. Finally, the value of global genotypic analysis for investigating bioterrorist-mediated outbreaks of anthrax is demonstrated.
Nature Genetics | 2014
Felipe Lorenzo; Chad D. Huff; Mikko Myllymäki; Benjamin A. Olenchock; Sabina Swierczek; Tsewang Tashi; Victor R. Gordeuk; Tana Wuren; Ri Li Ge; Donald A. McClain; Tahsin M. Khan; Parvaiz A Koul; Prasenjit Guchhait; Mohamed E. Salama; Jinchuan Xing; Gregg L. Semenza; Ella Liberzon; Andrew Wilson; Tatum S. Simonson; Lynn B. Jorde; William G. Kaelin; Peppi Koivunen; Josef T. Prchal
Tibetans do not exhibit increased hemoglobin concentration at high altitude. We describe a high-frequency missense mutation in the EGLN1 gene, which encodes prolyl hydroxylase 2 (PHD2), that contributes to this adaptive response. We show that a variant in EGLN1, c.[12C>G; 380G>C], contributes functionally to the Tibetan high-altitude phenotype. PHD2 triggers the degradation of hypoxia-inducible factors (HIFs), which mediate many physiological responses to hypoxia, including erythropoiesis. The PHD2 p.[Asp4Glu; Cys127Ser] variant exhibits a lower Km value for oxygen, suggesting that it promotes increased HIF degradation under hypoxic conditions. Whereas hypoxia stimulates the proliferation of wild-type erythroid progenitors, the proliferation of progenitors with the c.[12C>G; 380G>C] mutation in EGLN1 is significantly impaired under hypoxic culture conditions. We show that the c.[12C>G; 380G>C] mutation originated ∼8,000 years ago on the same haplotype previously associated with adaptation to high altitude. The c.[12C>G; 380G>C] mutation abrogates hypoxia-induced and HIF-mediated augmentation of erythropoiesis, which provides a molecular mechanism for the observed protection of Tibetans from polycythemia at high altitude.
Journal of Clinical Microbiology | 2007
Matthew N. Van Ert; W. Ryan Easterday; Tatum S. Simonson; Jana M. U'Ren; Talima Pearson; Leo J. Kenefic; Joseph D. Busch; Lynn Y. Huynh; Megan Dukerich; Carla B. Trim; Jodi Beaudry; Amy Welty-Bernard; Timothy D. Read; Claire M. Fraser; Jacques Ravel; Paul Keim
ABSTRACT Highly precise diagnostics and forensic assays can be developed through a combination of evolutionary analysis and the exhaustive examination of genomic sequences. In Bacillus anthracis, whole-genome sequencing efforts revealed ca. 3,500 single-nucleotide polymorphisms (SNPs) among eight different strains and evolutionary analysis provides the identification of canonical SNPs. We have previously shown that SNPs are highly evolutionarily stable, and the clonal nature of B. anthracis makes them ideal signatures for subtyping this pathogen. Here we identified SNPs that define the lineage of B. anthracis that contains the Ames strain, the strain used in the 2001 bioterrorist attacks in the United States. Sequencing and real-time PCR were used to validate these SNPs across B. anthracis strains, including (i) 88 globally and genetically diverse isolates; (ii) isolates that were shown to be genetic relatives of the Ames strain by multiple-locus variable number tandem repeat analysis (MLVA); and (iii) several different lab stocks of the Ames strain, including a clinical isolate from the 2001 letter attack. Six SNPs were found to be highly specific for the Ames strain; four on the chromosome, one on the pX01 plasmid, and one on the pX02 plasmid. All six SNPs differentiated the B. anthracis Ames strain from the 88 unique B. anthracis strains, while five of the six separated Ames from its close genetic relatives. The use of these SNPs coupled with real-time PCR allows specific and sensitive (<100 fg of template DNA) identification of the Ames strain. This evolutionary and genomics-based approach provides an effective means for the discovery of strain-specific SNPs in B. anthracis.
Genome Research | 2011
Chad D. Huff; David J. Witherspoon; Tatum S. Simonson; Jinchuan Xing; W. Scott Watkins; Yuhua Zhang; Thérèse M.F. Tuohy; Deborah W. Neklason; Randall W. Burt; Stephen L. Guthery; Scott R. Woodward; Lynn B. Jorde
Accurate estimation of recent shared ancestry is important for genetics, evolution, medicine, conservation biology, and forensics. Established methods estimate kinship accurately for first-degree through third-degree relatives. We demonstrate that chromosomal segments shared by two individuals due to identity by descent (IBD) provide much additional information about shared ancestry. We developed a maximum-likelihood method for the estimation of recent shared ancestry (ERSA) from the number and lengths of IBD segments derived from high-density SNP or whole-genome sequence data. We used ERSA to estimate relationships from SNP genotypes in 169 individuals from three large, well-defined human pedigrees. ERSA is accurate to within one degree of relationship for 97% of first-degree through fifth-degree relatives and 80% of sixth-degree and seventh-degree relatives. We demonstrate that ERSAs statistical power approaches the maximum theoretical limit imposed by the fact that distant relatives frequently share no DNA through a common ancestor. ERSA greatly expands the range of relationships that can be estimated from genetic data and is implemented in a freely available software package.
Human Genetics | 2012
Tatum S. Simonson; Donald A. McClain; Lynn B. Jorde; Josef T. Prchal
Some highland populations have genetic adaptations that enable their successful existence in a hypoxic environment. Tibetans are protected against many of the harmful responses exhibited by non-adapted populations upon exposure to severe hypoxia, including elevated hemoglobin concentration (i.e., polycythemia). Recent studies have highlighted several genes subject to natural selection in native high-altitude Tibetans. Three of these genes, EPAS1, EGLN1 and PPARA, regulate or are regulated by hypoxia inducible factor, a principal controller of erythropoiesis and other organismal functions. Uncovering the molecular basis of hypoxic adaptation should have implications for understanding hematological and other adaptations involved in hypoxia tolerance. Because the hypoxia response involves a variety of cardiovascular, pulmonary and metabolic functions, this knowledge would improve our understanding of disease mechanisms and could ultimately be translated into targeted therapies for oxygen deprivation, cardiopulmonary and cerebral pathologies, and metabolic disorders such as diabetes and obesity.
BioTechniques | 2004
Matthew N. Van Ert; Steven A. Hofstadler; Yun Jiang; Joseph D. Busch; David M. Wagner; Jared J. Drader; David J. Ecker; James C. Hannis; Lynn Y. Huynh; James M. Schupp; Tatum S. Simonson; Paul Keim
Epidemiological and forensic analyses of bioterrorism events involving Bacillus anthracis could be improved if both variable number tandem repeats (VNTRs) and single nucleotide polymorphisms (SNPs) could be combined on a single analysis platform. Here we present the use of electrospray ionization Fourier transform ion cyclotron resonance mass spectrometry (ESI-FTICR-MS) to characterize 24 alleles from 6 VNTR loci and 11 alleles from 7 SNP loci in B. anthracis. The results obtained with ESI-FTICR-MS were consistent with independent results obtained from traditional approaches using electrophoretic detection of fluorescent products. However, ESI-FTICR-MS improves on the traditional approaches because it does not require fluorescent labeling of PCR products, minimizes post-PCR processing, obviates electrophoresis, and provides unambiguous base composition of both SNP and VNTR PCR products. In addition, ESI-FTICR-MS allows both marker types to be examined simultaneously and at a rate of approximately 1 sample per min. This technology represents a significant advance in our ability to rapidly characterize B. anthracis isolates using VNTR and SNP loci.
Genomics | 2010
Jinchuan Xing; W. Scott Watkins; Adam Shlien; Erin Walker; Chad D. Huff; David J. Witherspoon; Yuhua Zhang; Tatum S. Simonson; Robert B. Weiss; Joshua D. Schiffman; David Malkin; Scott R. Woodward; Lynn B. Jorde
High-throughput genotyping data are useful for making inferences about human evolutionary history. However, the populations sampled to date are unevenly distributed, and some areas (e.g., South and Central Asia) have rarely been sampled in large-scale studies. To assess human genetic variation more evenly, we sampled 296 individuals from 13 worldwide populations that are not covered by previous studies. By combining these samples with a data set from our laboratory and the HapMap II samples, we assembled a final dataset of ~250,000 SNPs in 850 individuals from 40 populations. With more uniform sampling, the estimate of global genetic differentiation (F(ST)) substantially decreases from ~16% with the HapMap II samples to ~11%. A panel of copy number variations typed in the same populations shows patterns of diversity similar to the SNP data, with highest diversity in African populations. This unique sample collection also permits new inferences about human evolutionary history. The comparison of haplotype variation among populations supports a single out-of-Africa migration event and suggests that the founding population of Eurasia may have been relatively large but isolated from Africans for a period of time. We also found a substantial affinity between populations from central Asia (Kyrgyzstani and Mongolian Buryat) and America, suggesting a central Asian contribution to New World founder populations.
Journal of Clinical Microbiology | 2005
W. Ryan Easterday; Matthew N. Van Ert; Tatum S. Simonson; David M. Wagner; Leo J. Kenefic; Christopher J. Allender; Paul Keim
ABSTRACT A TaqMan-minor groove binding assay designed around a nonsense mutation in the plcR gene was used to genotype Bacillus anthracis, B. cereus, and B. thuringiensis isolates. The assay differentiated B. anthracis from these genetic near-neighbors and determined that the nonsense mutation is ubiquitous across 89 globally and genetically diverse B. anthracis strains.
Journal of Clinical Microbiology | 2005
Jana M. U'Ren; Matthew N. Van Ert; James M. Schupp; W. Ryan Easterday; Tatum S. Simonson; Richard T. Okinaka; Talima Pearson; Paul Keim
ABSTRACT A TaqMan allelic-discrimination assay designed around a synonymous single-nucleotide polymorphism was used to genotype Burkholderia pseudomallei and Burkholderia mallei isolates. The assay rapidly identifies and discriminates between these two highly pathogenic bacteria and does not cross-react with genetic near neighbors, such as Burkholderia thailandensis and Burkholderia cepacia.