Tatyana G. Lobastova
Russian Academy of Sciences
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Tatyana G. Lobastova.
Biocatalysis and Biotransformation | 2007
Tatyana G. Lobastova; S. A. Gulevskaya; Galina V. Sukhodolskaya; Konstantin F Turchin; Marina V. Donova
In total, 481 fungal strains were screened for the ability to carry out 7(α/β)-hydroxylation of dehydroepiandrosterone (DHEA, 3β-hydroxy-5-androsten-17-one). Representatives of 31 genera of 15 families and nine orders of ascomycetes, 17 genera of nine families and two orders of zygomycetes, two genera of two families and two orders of basidiomycetes, and 14 genera of mitosporic fungi expressed 7(α/β)-hydroxylase activity. The majority of strains were able to introduce a hydroxyl group to position 7α. Active strains selectively producing 3β,7α-dihydroxy-5-androsten-17-one were found among Actinomucor, Backusella, Benjaminiella, Epicoccum, Fusarium, Phycomyces and Trichothecium, with the highest yield of 1.25 and 1.9 g L−1 from 2 and 5 g L−1 DHEA, respectively, reached with F. oxysporum. Representatives of Acremonium, Bipolaris, Conidiobolus and Curvularia formed 3β,7β-dihydroxy-5-androsten-17-one as a major product from DHEA. The structures of the major steroid products were confirmed by TLC, gas chromatography (GC), mass spectra (MS), and 1H-NMR analyses.
Applied Biochemistry and Microbiology | 2009
Tatyana G. Lobastova; S. A. Gulevskaya; Galina V. Sukhodolskaya; Marina V. Donova
The ability of 485 fungal strains is studied for catalysis of the process of 7α, 15α-dihydroxylation of dehydroepiandrosterone (DHEA, 3β-hydroxy-5-androstene-17-one), a key intermediate of the synthesis of physiologically active compounds. The ability for the formation of 3β, 7α, 15α-trihydroxy-5-androstene-17-one (7α, 15α-diOH-DHEA) was found for the first time for representatives of 12 genera, eight families, and six orders of ascomycetes, eight genera, four families, and one order of zygomycetes, one genus, one family, and one order of basidiomycetes, and four genera of mitosporic fungi. The most active strains are found among genera Acremonium, Gibberella, Fusarium, and Nigrospora. In the process of transformation of DHEA (2 g/l) by strains of Fusarium oxysporum VKM F-1600 and Gibberella zeae BKM F-2600, the molar yield was 63 and 68%, respectively. Application of the revealed active strains of microorganisms opens prospects for the efficient production of key intermediates of synthesis of modern medical preparations.
Steroids | 2009
Tatyana G. Lobastova; S. M. Khomutov; Ljudmila L. Vasiljeva; Margarita A. Lapitskaya; Kasimir K. Pivnitsky; Marina V. Donova
The synthesis of 3beta-hydroxy-androsta-5,7-dien-17-one from 3beta-hydroxy-androst-5-en-17-one (dehydroepiandrosterone, DHEA) via microbial 7alpha-hydroxylation has been accomplished. At the first stage, 3beta,7alpha-dihydroxy-androst-5-en-17-one was obtained in high yield (71.2%) using a strain of Gibberella zeae VKM F-2600, which was first applied for DHEA conversion. The further route included the substitution of 7alpha-hydroxyl group with chlorine followed by a dehydrochlorination stage, and required minimal purifications of the intermediate products. The steroids obtained at every step were characterized by TLC,1H NMR, MS, UV- and IR-spectrometry. The combination of microbial and chemical steps ensured 54.6% yield of the target 3beta-hydroxy-androsta-5,7-dien-17-one from DHEA and can be applied for obtaining novel vitamin D derivatives.
Steroids | 2013
V.V. Kollerov; Daniela Monti; N.O. Deshcherevskaya; Tatyana G. Lobastova; Erica Elisa Ferrandi; A. Larovere; S.A. Gulevskaya; Sergio Riva; Marina V. Donova
Selected actinobacteria and filamentous fungi of different taxonomy were screened for the ability to carry out regio- and stereospecific hydroxylation of lithocholic acid (LCA) at position 7β. The production of ursodeoxycholic acid (UDCA) was for the first time shown for the fungal strains of Bipolaris, Gibberella, Cunninghamella and Curvularia, as well as for isolated actinobacterial strains of Pseudonocardia, Saccharothrix, Amycolatopsis, Lentzea, Saccharopolyspora and Nocardia genera. Along with UDCA, chenodeoxycholic (CDCA), deoxycholic (DCA), cholic (CA), 7-ketodeoxycholic and 3-ketodeoxycholic acids were detected amongst the metabolites by some strains. A strain of Gibberella zeae VKM F-2600 expressed high level of 7β-hydroxylating activity towards LCA. Under optimized conditions, the yield of UDCA reached 90% at 1g/L of LCA and up to 60% at a 8-fold increased substrate loading. The accumulation of the major by-product, 3-keto UDCA, was limited by using selected biotransformation media.
Applied Biochemistry and Microbiology | 2015
Tatyana G. Lobastova; S. M. Khomutov; Marina V. Donova
The transformation of dehydroepiandrosterone by Spicaria fumoso-rosea VKM F-881 produced 7α- and 7β-hydroxy-dehydroepiandrosterone, 3β,7α-dihydroxy-17a-oxa-D-homo-androst-5-en-17-one, and 3β,7β-dihydroxy-17a-oxa-D-homo-androst-5-en-17-one. The yield of the main product—3β,7β-dihydroxy-17a-oxa-D-homo-androst-5-en-17-one—was 49.5–72 mol % at substrate loadings of 5–20 g/L. Lactone formation proceeded through 7α- and 7β-hydroxy derivatives of dehydroepiandrosterone. The structure of the products was determined by mass spectrometry, 1H-NMR spectroscopy, and 13C-NMR spectroscopy. The proposed microbiological method for producing steroid lactones opens prospects for the synthesis of novel steroid compounds.
Steroids | 2016
V.V. Kollerov; Tatyana G. Lobastova; Daniela Monti; N.O. Deshcherevskaya; Erica Elisa Ferrandi; Giovanni Fronza; Sergio Riva; Marina V. Donova
More than 100 filamentous fungi strains, mostly ascomycetes and zygomycetes from different phyla, were screened for the ability to convert deoxycholic acid (DCA) to valuable bile acid derivatives. Along with 11 molds which fully degraded DCA, several strains were revealed capable of producing cholic acid, ursocholic acid, 12-keto-lithocholic acid (12-keto-LCA), 3-keto-DCA, 15β-hydroxy-DCA and 15β-hydroxy-12-oxo-LCA as major products from DCA. The last metabolite was found to be a new compound. The ability to catalyze the introduction of a hydroxyl group at the 7(α/β)-positions of the DCA molecule was shown for 32 strains with the highest 7β-hydroxylase activity level for Fusarium merismoides VKM F-2310. Curvularia lunata VKM F-644 exhibited 12α-hydroxysteroid dehydrogenase activity and formed 12-keto-LCA from DCA. Acremonium rutilum VKM F-2853 and Neurospora crassa VKM F-875 produced 15β-hydroxy-DCA and 15β-hydroxy-12-oxo-LCA, respectively, as major products from DCA, as confirmed by MS and NMR analyses. For most of the positive strains, the described DCA-transforming activity was unreported to date. The presented results expand the knowledge on bile acid metabolism by filamentous fungi, and might be suitable for preparative-scale exploitation aimed at the production of marketed bile acids.
Fems Microbiology Letters | 2004
Tatyana G. Lobastova; Galina V. Sukhodolskaya; Vera M. Nikolayeva; B. P. Baskunov; Konstantin F Turchin; Marina V. Donova
Journal of Biotechnology | 2010
Tatyana G. Lobastova; Marina V. Donova
Journal of Molecular Catalysis B-enzymatic | 2016
N.O. Deshcherevskaya; Tatyana G. Lobastova; Vyacheslav Kollerov; A.V. Kazantsev; Marina V. Donova
Journal of Biotechnology | 2010
S. A. Gulevskaya; Tatyana G. Lobastova; Marina V. Donova