Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Tatyana G. Sokolova is active.

Publication


Featured researches published by Tatyana G. Sokolova.


Nature | 2010

Formate-driven growth coupled with H2 production

Yun Jae Kim; Hyun Sook Lee; Eun Sook Kim; Seung Seob Bae; Jae Kyu Lim; Rie Matsumi; Alexander V. Lebedinsky; Tatyana G. Sokolova; Darya A. Kozhevnikova; Sun Shin Cha; Sang-Jin Kim; Kae Kyoung Kwon; Tadayuki Imanaka; Haruyuki Atomi; Elizaveta A. Bonch-Osmolovskaya; Jung-Hyun Lee; Sung Gyun Kang

Although a common reaction in anaerobic environments, the conversion of formate and water to bicarbonate and H2 (with a change in Gibbs free energy of ΔG° = +1.3 kJ mol−1) has not been considered energetic enough to support growth of microorganisms. Recently, experimental evidence for growth on formate was reported for syntrophic communities of Moorella sp. strain AMP and a hydrogen-consuming Methanothermobacter species and of Desulfovibrio sp. strain G11 and Methanobrevibacter arboriphilus strain AZ. The basis of the sustainable growth of the formate-users is explained by H2 consumption by the methanogens, which lowers the H2 partial pressure, thus making the pathway exergonic. However, it has not been shown that a single strain can grow on formate by catalysing its conversion to bicarbonate and H2. Here we report that several hyperthermophilic archaea belonging to the Thermococcus genus are capable of formate-oxidizing, H2-producing growth. The actual ΔG values for the formate metabolism are calculated to range between −8 and −20 kJ mol−1 under the physiological conditions where Thermococcus onnurineus strain NA1 are grown. Furthermore, we detected ATP synthesis in the presence of formate as a sole energy source. Gene expression profiling and disruption identified the gene cluster encoding formate hydrogen lyase, cation/proton antiporter and formate transporter, which were responsible for the growth of T. onnurineus NA1 on formate. This work shows formate-driven growth by a single microorganism with protons as the electron acceptor, and reports the biochemical basis of this ability.


Extremophiles | 2004

The first evidence of anaerobic CO oxidation coupled with H2 production by a hyperthermophilic archaeon isolated from a deep-sea hydrothermal vent

Tatyana G. Sokolova; Christian Jeanthon; N. A. Kostrikina; Nikolai A. Chernyh; Alexander V. Lebedinsky; Erko Stackebrandt; Elizaveta A. Bonch-Osmolovskaya

From 24 samples of hydrothermal venting structures collected at the East Pacific Rise (13°N), 13 enrichments of coccoid cells were obtained which grew on CO, producing H2 and CO2 at 80°C. A hyperthermophilic archaeon capable of lithotrophic growth on CO coupled with equimolar production of H2 was isolated. Based on its 16S rRNA sequence analysis, this organism was affiliated with the genus Thermococcus. Other strains of Thermococcales species (Pyrococcus furiosus, Thermococcus peptonophilus, T. profundus, T. chitonophagus, T. stetteri, T. gorgonarius, T. litoralis, and T. pacificus) were shown to be unable to grow on CO. Searches in sequence databases failed to reveal deposited sequences of genes related to CO metabolism in Thermococcales. Our work provides the first evidence of anaerobic CO oxidation coupled with H2 production performed by an archaeon as well as the first documented case of lithotrophic growth of a Thermococcales representative.


International Journal of Systematic and Evolutionary Microbiology | 2002

Carboxydocella thermautotrophica gen. nov., sp. nov., a novel anaerobic, CO-utilizing thermophile from a Kamchatkan hot spring.

Tatyana G. Sokolova; N. A. Kostrikina; N. A. Chernyh; T. P. Tourova; T. V. Kolganova; Elizaveta A. Bonch-Osmolovskaya

A novel anaerobic, thermophilic, CO-utilizing bacterium, strain 41(T), was isolated from a terrestrial hot vent on the Kamchatka Peninsula. Strain 41(T) was found to be a Gram-positive bacterium, its cells being short, straight, motile rods. Chains of three to five cells were often observed. The isolate grew only chemolithoautotrophically on CO, producing equimolar quantities of H2 and CO2 (according to the equation CO+H2O --> CO2+H2). Growth was observed in the temperature range 40-68 degrees C, with an optimum at 58 degrees C, and in the pH range 6.5-7.6, with an optimum at pH 7.0. The generation time under optimal conditions for chemolithotrophic growth was 1.1 h. The DNA G+C content was 46 +/- 1 mol%. Growth was completely inhibited by penicillin, ampicillin, streptomycin, kanamycin and neomycin. On the basis of the phenotypic and phylogenetic features, it is proposed that this isolate represents a new genus and species, Carboxydocella thermautotrophica gen. nov., sp. nov. (type strain 41(T) = DSM 12356(T) = VKM B-2282(T)).


International Journal of Systematic and Evolutionary Microbiology | 2001

Carboxydobrachium pacificum gen. nov., sp. nov., a new anaerobic, thermophilic, CO- utilizing marine bacterium from Okinawa Trough

Tatyana G. Sokolova; Juan M. González; N. A. Kostrikina; N. A. Chernyh; T. P. Tourova; Kato C; Elizaveta A. Bonch-Osmolovskaya; Frank T. Robb

A new anaerobic, thermophilic, CO-utilizing marine bacterium, strain JMT, was isolated from a submarine hot vent in Okinawa Trough. Cells of strain JMT were non-motile thin straight rods, sometimes branching, with a cell wall of the Gram-positive type, surrounded with an S-layer. Chains of three to five cells were often observed. The isolate grew chemolithotrophically on CO, producing equimolar quantities of H2 and CO2 (according to the equation CO+H2O-->CO2+H2) and organotrophically on peptone, yeast extract, starch, cellobiose, glucose, galactose, fructose and pyruvate, producing H2, acetate and CO2. Growth was observed from 50 to 80 degrees C with an optimum at 70 degrees C. The optimum pH was 6.8-7.1. The optimum concentration of sea salts in the medium was 20.5-25.5 g l(-1). The generation time under optimal conditions was 7.1 h. The DNA G+C content was 33 mol %. Growth of isolate JMT was not inhibited by penicillin, but ampicillin, streptomycin, kanamycin and neomycin completely inhibited growth. The results of 16S rDNA sequence analysis revealed that strain JMT belongs to the Thermoanaerobacter phylogenetic group within the Bacillus-Clostridium subphylum of Gram-positive bacteria but represents a separate branch of this group. On the basis of morphological and physiological features and phylogenetic data, this isolate should be assigned to a new genus, for which the name Carboxydobrachium is proposed. The type species is Carboxydobrachium pacificum; the type strain is JMT (= DSM 12653T).


FEMS Microbiology Ecology | 2009

Diversity and ecophysiological features of thermophilic carboxydotrophic anaerobes

Tatyana G. Sokolova; Anne-Meint Henstra; Jan Sipma; Sofiya N. Parshina; Alfons J. M. Stams; Alexander V. Lebedinsky

Both natural and anthropogenic hot environments contain appreciable levels of carbon monoxide (CO). Anaerobic microbial communities play an important role in CO conversion in such environments. CO is involved in a number of redox reactions. It is biotransformed by thermophilic methanogens, acetogens, hydrogenogens, sulfate reducers, and ferric iron reducers. Most thermophilic CO-oxidizing anaerobes have diverse metabolic capacities, but two hydrogenogenic species are obligate carboxydotrophs. Among known thermophilic carboxydotrophic anaerobes, hydrogenogens are most numerous, and based on available data they are most important in CO biotransformation in hot environments.


Frontiers in Microbiology | 2012

Evidence for Horizontal Gene Transfer of Anaerobic Carbon Monoxide Dehydrogenases

Stephen M. Techtmann; Alexander V. Lebedinsky; Albert S. Colman; Tatyana G. Sokolova; Tanja Woyke; Lynne Goodwin; Frank T. Robb

Carbon monoxide (CO) is commonly known as a toxic gas, yet both cultivation studies and emerging genome sequences of bacteria and archaea establish that CO is a widely utilized microbial growth substrate. In this study, we determined the prevalence of anaerobic carbon monoxide dehydrogenases ([Ni,Fe]-CODHs) in currently available genomic sequence databases. Currently, 185 out of 2887, or 6% of sequenced bacterial and archaeal genomes possess at least one gene encoding [Ni,Fe]-CODH, the key enzyme for anaerobic CO utilization. Many genomes encode multiple copies of [Ni,Fe]-CODH genes whose functions and regulation are correlated with their associated gene clusters. The phylogenetic analysis of this extended protein family revealed six distinct clades; many clades consisted of [Ni,Fe]-CODHs that were encoded by microbes from disparate phylogenetic lineages, based on 16S rRNA sequences, and widely ranging physiology. To more clearly define if the branching patterns observed in the [Ni,Fe]-CODH trees are due to functional conservation vs. evolutionary lineage, the genomic context of the [Ni,Fe]-CODH gene clusters was examined, and superimposed on the phylogenetic trees. On the whole, there was a correlation between genomic contexts and the tree topology, but several functionally similar [Ni,Fe]-CODHs were found in different clades. In addition, some distantly related organisms have similar [Ni,Fe]-CODH genes. Thermosinus carboxydivorans was used to observe horizontal gene transfer (HGT) of [Ni,Fe]-CODH gene clusters by applying Kullback–Leibler divergence analysis methods. Divergent tetranucleotide frequency and codon usage showed that the gene cluster of T. carboxydivorans that encodes a [Ni,Fe]-CODH and an energy-converting hydrogenase is dissimilar to its whole genome but is similar to the genome of the phylogenetically distant Firmicute, Carboxydothermus hydrogenoformans. These results imply that T carboxydivorans acquired this gene cluster via HGT from a relative of C. hydrogenoformans.


Neuroscience Letters | 2001

Catalase in astroglia-rich primary cultures from rat brain: immunocytochemical localization and inactivation during the disposal of hydrogen peroxide

Tatyana G. Sokolova; Jan Mirko Gutterer; Johannes Hirrlinger; Bernd Hamprecht; Ralf Dringen

The expression of catalase in cells of astroglia-rich primary cultures derived from the brains of newborn rats was investigated by double-labelling immunocytochemical staining. Strong catalase immunoreactivity was found in cells positive for glial fibrillary acidic protein and galactocerebroside, cellular markers for astroglial and oligodendroglial cells, respectively. The cells of these cultures dispose of exogenously applied hydrogen peroxide (initial concentration 200 microM) quickly with first order kinetics. In contrast, after inhibition of glutathione peroxidases by mercaptosuccinate the rate of the catalase-dependent disposal of H(2)O(2) declined with time and after about 10 min the extracellular concentration of H(2)O(2) remained almost constant at a concentration of about 100 microM. Catalase activity after 10 min of incubation under these conditions was no longer detectable. In contrast, in the absence of mercaptosuccinate catalase activity was maintained during H(2)O(2) disposal. These results demonstrate that in astroglia-rich cultures catalase is strongly expressed in the predominant astroglial cells and in the minor population of oligodendroglial cells and that the enzyme is rapidly inactivated during the disposal of H(2)O(2), if the glutathione system of the cells is compromised.


International Journal of Systematic and Evolutionary Microbiology | 2009

Carboxydothermus siderophilus sp. nov., a thermophilic, hydrogenogenic, carboxydotrophic, dissimilatory Fe(III)-reducing bacterium from a Kamchatka hot spring.

Tatiana V. Slepova; Tatyana G. Sokolova; T. V. Kolganova; T. P. Tourova; Elizaveta A. Bonch-Osmolovskaya

A novel anaerobic, thermophilic, Fe(III)-reducing, CO-utilizing bacterium, strain 1315(T), was isolated from a hot spring of Geyser Valley on the Kamchatka Peninsula. Cells of the new isolate were Gram-positive, short rods. Growth was observed at 52-70 degrees C, with an optimum at 65 degrees C, and at pH 5.5-8.5, with an optimum at pH 6.5-7.2. In the presence of Fe(III) or 9,10-anthraquinone 2,6-disulfonate (AQDS), the bacterium was capable of growth with CO and yeast extract (0.2 g l(-1)); during growth under these conditions, strain 1315(T) produced H(2) and CO(2) and Fe(II) or AQDSH(2), respectively. Strain 1315(T) also grew by oxidation of yeast extract, glucose, xylose or lactate under a N(2) atmosphere, reducing Fe(III) or AQDS. Yeast extract (0.2 g l(-1)) was required for growth. Isolate 1315(T) grew exclusively with Fe(III) or AQDS as an electron acceptor. The generation time under optimal conditions with CO as growth substrate was 9.3 h. The G+C content of the DNA was 41.5+/-0.5 mol%. 16S rRNA gene sequence analysis placed the organism in the genus Carboxydothermus (97.8 % similarity with the closest relative). On the basis of physiological features and phylogenetic analysis, it is proposed that strain 1315(T) should be assigned to a novel species, Carboxydothermus siderophilus sp. nov., with the type strain 1315(T) (=VKPM 9905B(T) =VKM B-2474(T) =DSM 21278(T)).


Journal of Bacteriology | 2011

Complete Genome Sequence of the Hyperthermophilic Archaeon Thermococcus sp. Strain AM4, Capable of Organotrophic Growth and Growth at the Expense of Hydrogenogenic or Sulfidogenic Oxidation of Carbon Monoxide

Philippe Oger; Tatyana G. Sokolova; Darya A. Kozhevnikova; Nikolai A. Chernyh; Douglas H. Bartlett; Elizaveta A. Bonch-Osmolovskaya; Alexander V. Lebedinsky

Analysis of the complete genome of Thermococcus sp. strain AM4, which was the first lithotrophic Thermococcales isolate described and the first archaeal isolate to exhibit a capacity for hydrogenogenic carboxydotrophy, reveals a proximity with Thermococcus gammatolerans, corresponding to close but distinct species that differ significantly in their lithotrophic capacities.


International Journal of Systematic and Evolutionary Microbiology | 2012

Carboxydocella manganica sp. nov., a thermophilic, dissimilatory Mn(IV)- and Fe(III)-reducing bacterium from a Kamchatka hot spring

G. B. Slobodkina; A. N. Panteleeva; Tatyana G. Sokolova; Elizaveta A. Bonch-Osmolovskaya; A. I. Slobodkin

A thermophilic, anaerobic, dissimilatory Mn(IV)- and Fe(III)-reducing bacterium (strain SLM 61T) was isolated from a terrestrial hot spring on the Kamchatka peninsula. The cells were straight rods, 0.5-0.6 µm in diameter and 1.0-6.0 µm long, and exhibited tumbling motility by means of peritrichous flagellation. The strain grew at 26-70 °C, with an optimum at 58-60 °C, and at pH 5.5-8.0, with an optimum at pH 6.5. Growth of SLM 61T was observed at 0-2.0 % (w/v) NaCl, with an optimum at 0.5 % (w/v). The generation time under optimal growth conditions was 40 min. Strain SLM 61T grew and reduced Mn(IV), Fe(III) or nitrate with a number of organic acids and complex proteinaceous compounds as electron donors. It was capable of chemolithoautotrophic growth using molecular hydrogen as an electron donor, Fe(III) but not Mn(IV) or nitrate as an electron acceptor and CO2 as a carbon source. It also was able to ferment pyruvate, yeast extract, glucose, fructose, sucrose and maltose. The G+C content of DNA of strain SLM 61T was 50.9 mol%. 16S rRNA gene sequence analysis revealed that the closest relative of the isolated organism was Carboxydocella thermautotrophica 41T (96.9 % similarity). On the basis of its physiological properties and phylogenetic analyses, the isolate is considered to represent a novel species, for which the name Carboxydocella manganica sp. nov. is proposed. The type strain is SLM 61T (=DSM 23132T=VKM B-2609T). C. manganica is the first described representative of the genus Carboxydocella that possesses the ability to reduce metals and does not utilize CO.

Collaboration


Dive into the Tatyana G. Sokolova's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

N. A. Kostrikina

Russian Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar

Nikolai A. Chernyh

Russian Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar

T. V. Kolganova

Russian Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar

T. P. Tourova

Russian Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar

Tatiana V. Slepova

Russian Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar

A. I. Slobodkin

Russian Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Ilya V. Kublanov

Russian Academy of Sciences

View shared research outputs
Researchain Logo
Decentralizing Knowledge