Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Tatyana Grinenko is active.

Publication


Featured researches published by Tatyana Grinenko.


Cell | 2018

Modulation of Myelopoiesis Progenitors Is an Integral Component of Trained Immunity

Ioannis Mitroulis; Klara Ruppova; Baomei Wang; Lan-Sun Chen; Michal Grzybek; Tatyana Grinenko; Anne Eugster; Maria Troullinaki; Alessandra Palladini; Ioannis Kourtzelis; Antonios Chatzigeorgiou; Andreas Schlitzer; Marc Beyer; Leo A. B. Joosten; Berend Isermann; Mathias Lesche; Andreas Petzold; Kai Simons; Ian Henry; Andreas Dahl; Joachim L. Schultze; Ben Wielockx; Nicola Zamboni; Peter Mirtschink; Ünal Coskun; George Hajishengallis; M.G. Netea; Triantafyllos Chavakis

Summary Trained innate immunity fosters a sustained favorable response of myeloid cells to a secondary challenge, despite their short lifespan in circulation. We thus hypothesized that trained immunity acts via modulation of hematopoietic stem and progenitor cells (HSPCs). Administration of β-glucan (prototypical trained-immunity-inducing agonist) to mice induced expansion of progenitors of the myeloid lineage, which was associated with elevated signaling by innate immune mediators, such as IL-1β and granulocyte-macrophage colony-stimulating factor (GM-CSF), and with adaptations in glucose metabolism and cholesterol biosynthesis. The trained-immunity-related increase in myelopoiesis resulted in a beneficial response to secondary LPS challenge and protection from chemotherapy-induced myelosuppression in mice. Therefore, modulation of myeloid progenitors in the bone marrow is an integral component of trained immunity, which to date, was considered to involve functional changes of mature myeloid cells in the periphery.


Journal of Experimental Medicine | 2014

Clonal expansion capacity defines two consecutive developmental stages of long-term hematopoietic stem cells.

Tatyana Grinenko; Kathrin Arndt; Melanie Portz; Nicole Mende; Marko Günther; Kadriye Nehir Cosgun; Dimitra Alexopoulou; Naharajan Lakshmanaperumal; Ian Henry; Andreas Dahl; Claudia Waskow

Hematopoietic stem cells expressing intermediate levels of Kit have superior repopulation capacity after transplantation compared with those expressing high levels of Kit.


Blood | 2012

Polycomb group ring finger 1 cooperates with Runx1 in regulating differentiation and self-renewal of hematopoietic cells

Katharina Ross; Anna Sedello; Gabriele Putz Todd; Maciej Paszkowski-Rogacz; Alexander W. Bird; Li Ding; Tatyana Grinenko; Kira Behrens; Nina C. Hubner; Matthias Mann; Claudia Waskow; Carol Stocking; Frank Buchholz

The transcription factor runt-related transcription factor 1 (Runx1) is essential for the establishment of definitive hematopoiesis during embryonic development. In adult blood homeostasis, Runx1 plays a pivotal role in the maturation of lymphocytes and megakaryocytes. Furthermore, Runx1 is required for the regulation of hematopoietic stem and progenitor cells. However, how Runx1 orchestrates self-renewal and lineage choices in combination with other factors is not well understood. In the present study, we describe a genome-scale RNA interference screen to detect genes that cooperate with Runx1 in regulating hematopoietic stem and progenitor cells. We identify the polycomb group protein Pcgf1 as an epigenetic regulator involved in hematopoietic cell differentiation and show that simultaneous depletion of Runx1 and Pcgf1 allows sustained self-renewal while blocking differentiation of lineage marker-negative cells in vitro. We found an up-regulation of HoxA cluster genes on Pcgf1 knock-down that possibly accounts for the increase in self-renewal. Moreover, our data suggest that cells lacking both Runx1 and Pcgf1 are blocked at an early progenitor stage, indicating that a concerted action of the transcription factor Runx1, together with the epigenetic repressor Pcgf1, is necessary for terminal differentiation. The results of the present study uncover a link between transcriptional and epigenetic regulation that is required for hematopoietic differentiation.


Blood | 2016

The bulk of the hematopoietic stem cell population is dispensable for murine steady-state and stress hematopoiesis.

Kristina Schoedel; Mina Morcos; Thomas Zerjatke; Ingo Roeder; Tatyana Grinenko; David Voehringer; Göthert; Claudia Waskow; Axel Roers; Alexander Gerbaulet

Long-term repopulating (LT) hematopoietic stem cells (HSCs) are the most undifferentiated cells at the top of the hematopoietic hierarchy. The regulation of HSC pool size and its contribution to hematopoiesis are incompletely understood. We depleted hematopoietic stem and progenitor cells (HSPCs) in adult mice in situ and found that LT-HSCs recovered from initially very low levels (<1%) to below 10% of normal numbers but not more, whereas progenitor cells substantially recovered shortly after depletion. In spite of the persistent and massive reduction of LT-HSCs, steady-state hematopoiesis was unaffected and residual HSCs remained quiescent. Hematopoietic stress, although reported to recruit quiescent HSCs into cycle, was well tolerated by HSPC-depleted mice and did not induce expansion of the small LT-HSC compartment. Only upon 5-fluorouracil treatment was HSPC-depleted bone marrow compromised in reconstituting hematopoiesis, demonstrating that HSCs and early progenitors are crucial to compensate myeloablation. Hence, a contracted HSC compartment cannot recover in situ to its original size, and normal steady-state blood cell generation is sustained with <10% of normal LT-HSC numbers without increased contribution of the few residual cells.Long-term repopulating (LT) hematopoietic stem cells (HSCs) are the most undifferentiated cells at the top of the hematopoietic hierarchy. The regulation of HSC pool size and its contribution to hematopoiesis are incompletely understood. We depleted hematopoietic stem and progenitor cells (HSPCs) in adult mice in situ and found that LT-HSCs recovered from initially very low levels (<1%) to below 10% of normal numbers but not more, whereas progenitor cells substantially recovered shortly after depletion. In spite of the persistent and massive reduction of LT-HSCs, steady-state hematopoiesis was unaffected and residual HSCs remained quiescent. Hematopoietic stress, although reported to recruit quiescent HSCs into cycle, was well tolerated by HSPC-depleted mice and did not induce expansion of the small LT-HSC compartment. Only upon 5-fluorouracil treatment was HSPC-depleted bone marrow compromised in reconstituting hematopoiesis, demonstrating that HSCs and early progenitors are crucial to compensate myeloablation. Hence, a contracted HSC compartment cannot recover in situ to its original size, and normal steady-state blood cell generation is sustained with <10% of normal LT-HSC numbers without increased contribution of the few residual cells.


Blood | 2013

HIF prolyl hydroxylase 2 (PHD2) is a critical regulator of hematopoietic stem cell maintenance during steady-state and stress

Rashim Pal Singh; Kristin Franke; Joanna Kalucka; Soulafa Mamlouk; Antje Muschter; Agnieszka Gembarska; Tatyana Grinenko; Carsten Willam; Ronald Naumann; Konstantinos Anastassiadis; A. Francis Stewart; Stefan R. Bornstein; Triantafyllos Chavakis; Georg Breier; Claudia Waskow; Ben Wielockx

Hypoxia is a prominent feature in the maintenance of hematopoietic stem cell (HSC) quiescence and multipotency. Hypoxia-inducible factor (HIF) prolyl hydroxylase domain proteins (PHDs) serve as oxygen sensors and may therefore regulate this system. Here, we describe a mouse line with conditional loss of HIF prolyl hydroxylase 2 (PHD2) in very early hematopoietic precursors that results in self-renewal of multipotent progenitors under steady-state conditions in a HIF1α- and SMAD7-dependent manner. Competitive bone marrow (BM) transplantations show decreased peripheral and central chimerism of PHD2-deficient cells but not of the most primitive progenitors. Conversely, in whole BM transfer, PHD2-deficient HSCs replenish the entire hematopoietic system and display an enhanced self-renewal capacity reliant on HIF1α. Taken together, our results demonstrate that loss of PHD2 controls the maintenance of the HSC compartment under physiological conditions and causes the outcompetition of PHD2-deficient hematopoietic cells by their wild-type counterparts during stress while promoting the self-renewal of very early hematopoietic progenitors.


Journal of Experimental Medicine | 2015

CCND1–CDK4–mediated cell cycle progression provides a competitive advantage for human hematopoietic stem cells in vivo

Nicole Mende; Erika E. Kuchen; Mathias Lesche; Tatyana Grinenko; Konstantinos D. Kokkaliaris; Helmut Hanenberg; Dirk Lindemann; Andreas Dahl; Alexander Platz; Thomas Höfer; Federico Calegari; Claudia Waskow

Maintenance of stem cell properties is associated with reduced proliferation but it is unknown whether the transition kinetics through distinct cell cycle phases influences the function of HSCs. Mende et al examine the effects of increasing two cell cycle complexes CCND1–CDK4 and CCNE1–CDK2 on the transition kinetics of human HSCs and their maintenance and functional alterations in vivo.


Journal of Clinical Investigation | 2017

Secreted protein Del-1 regulates myelopoiesis in the hematopoietic stem cell niche

Ioannis Mitroulis; Lan-Sun Chen; Rashim Pal Singh; Ioannis Kourtzelis; Matina Economopoulou; Tetsuhiro Kajikawa; Maria Troullinaki; Athanasios Ziogas; Klara Ruppova; Kavita B. Hosur; Tomoki Maekawa; Baomei Wang; Pallavi Subramanian; Torsten Tonn; Panayotis Verginis; Malte von Bonin; Manja Wobus; Martin Bornhäuser; Tatyana Grinenko; Marianna Di Scala; Andrés Hidalgo; Ben Wielockx; George Hajishengallis; Triantafyllos Chavakis

Hematopoietic stem cells (HSCs) remain mostly quiescent under steady-state conditions but switch to a proliferative state following hematopoietic stress, e.g., bone marrow (BM) injury, transplantation, or systemic infection and inflammation. The homeostatic balance between quiescence, self-renewal, and differentiation of HSCs is strongly dependent on their interactions with cells that constitute a specialized microanatomical environment in the BM known as the HSC niche. Here, we identified the secreted extracellular matrix protein Del-1 as a component and regulator of the HSC niche. Specifically, we found that Del-1 was expressed by several cellular components of the HSC niche, including arteriolar endothelial cells, CXCL12-abundant reticular (CAR) cells, and cells of the osteoblastic lineage. Del-1 promoted critical functions of the HSC niche, as it regulated long-term HSC (LT-HSC) proliferation and differentiation toward the myeloid lineage. Del-1 deficiency in mice resulted in reduced LT-HSC proliferation and infringed preferentially upon myelopoiesis under both steady-state and stressful conditions, such as hematopoietic cell transplantation and G-CSF- or inflammation-induced stress myelopoiesis. Del-1-induced HSC proliferation and myeloid lineage commitment were mediated by β3 integrin on hematopoietic progenitors. This hitherto unknown Del-1 function in the HSC niche represents a juxtacrine homeostatic adaptation of the hematopoietic system in stress myelopoiesis.


Stem cell reports | 2018

Hematopoietic Stem Cells but Not Multipotent Progenitors Drive Erythropoiesis during Chronic Erythroid Stress in EPO Transgenic Mice

Rashim Pal Singh; Tatyana Grinenko; Beáta Ramasz; Kristin Franke; Mathias Lesche; Andreas Dahl; Max Gassmann; Triantafyllos Chavakis; Ian Henry; Ben Wielockx

Summary The hematopoietic stem cell (HSC) compartment consists of a small pool of cells capable of replenishing all blood cells. Although it is established that the hematopoietic system is assembled as a hierarchical organization under steady-state conditions, emerging evidence suggests that distinct differentiation pathways may exist in response to acute stress. However, it remains unclear how different hematopoietic stem and progenitor cell subpopulations behave under sustained chronic stress. Here, by using adult transgenic mice overexpressing erythropoietin (EPO; Tg6) and a combination of in vivo, in vitro, and deep-sequencing approaches, we found that HSCs respond differentially to chronic erythroid stress compared with their closely related multipotent progenitors (MPPs). Specifically, HSCs exhibit a vastly committed erythroid progenitor profile with enhanced cell division, while MPPs display erythroid and myeloid cell signatures and an accumulation of uncommitted cells. Thus, our results identify HSCs as master regulators of chronic stress erythropoiesis, potentially circumventing the hierarchical differentiation-detour.


Nature Communications | 2018

Hematopoietic stem cells can differentiate into restricted myeloid progenitors before cell division in mice

Tatyana Grinenko; Anne Eugster; Lars Thielecke; Beáta Ramasz; Anja Krüger; Sevina Dietz; Ingmar Glauche; Alexander Gerbaulet; Malte von Bonin; Onur Basak; Hans Clevers; Triantafyllos Chavakis; Ben Wielockx

Hematopoietic stem cells (HSCs) continuously replenish all blood cell types through a series of differentiation steps and repeated cell divisions that involve the generation of lineage-committed progenitors. However, whether cell division in HSCs precedes differentiation is unclear. To this end, we used an HSC cell-tracing approach and Ki67RFP knock-in mice, in a non-conditioned transplantation model, to assess divisional history, cell cycle progression, and differentiation of adult HSCs. Our results reveal that HSCs are able to differentiate into restricted progenitors, especially common myeloid, megakaryocyte-erythroid and pre-megakaryocyte progenitors, without undergoing cell division and even before entering the S phase of the cell cycle. Additionally, the phenotype of the undivided but differentiated progenitors correlated with the expression of lineage-specific genes and loss of multipotency. Thus HSC fate decisions can be uncoupled from physical cell division. These results facilitate a better understanding of the mechanisms that control fate decisions in hematopoietic cells.Dependence of hematopoietic stem cell (HSC) fate on the phase of the cell cycle has not been demonstrated in vivo. Here, the authors find that HSCs can differentiate into a downstream progenitor without physical division, even before progressing into the S phase of the cell cycle.


bioRxiv | 2018

Hematopoietic stem cells differentiate into restricted myeloid progenitors before cell division

Tatyana Grinenko; Anne Eugster; Lars Thielecke; Beáta Ramasz; Anja Krueger; Sevina Dietz; Ingmar Glauche; Alexander Gerbaulet; Malte von Bonin; Onur Basak; Hans Clevers; Triantafyllos Chavakis; Ben Wielockx

Hematopoietic stem cells (HSCs) continuously replenish all blood cell types through a series of differentiation steps that involve the generation of lineage-committed progenitors as well as necessary expansion due to repeated cell divisions. However, whether cell division in HSCs precedes differentiation is unclear. To this end, we used an HSC cell tracing approach and Ki67RFP knock-in mice to assess simultaneously divisional history, cell cycle progression, and differentiation of adult HSCs in vivo. Our results reveal that HSCs are able to differentiate into restricted progenitors, especially common myeloid progenitors, restricted megakaryocyte-erythroid progenitors (PreMEs) and pre-megakaryocyte progenitors (PreMegs), without undergoing cell division and even before entering the S phase of the cell cycle. Additionally, the phenotype of the undivided but differentiated progenitors correlated with expression of lineage-specific genes that manifested as functional differences between HSCs and restricted progenitors. Thus, HSC fate decisions appear to be uncoupled from physical cell division. Our results facilitate a better understanding of the mechanisms that control fate decisions in hematopoietic cells. Our data, together with separate findings from embryonic stem cells, suggest that cell division and fate choice are independent processes in pluripotent and multipotent stem cells.

Collaboration


Dive into the Tatyana Grinenko's collaboration.

Top Co-Authors

Avatar

Claudia Waskow

Dresden University of Technology

View shared research outputs
Top Co-Authors

Avatar

Ben Wielockx

Dresden University of Technology

View shared research outputs
Top Co-Authors

Avatar

Triantafyllos Chavakis

Dresden University of Technology

View shared research outputs
Top Co-Authors

Avatar

Alexander Gerbaulet

Dresden University of Technology

View shared research outputs
Top Co-Authors

Avatar

Andreas Dahl

Dresden University of Technology

View shared research outputs
Top Co-Authors

Avatar

Anne Eugster

Dresden University of Technology

View shared research outputs
Top Co-Authors

Avatar

Beáta Ramasz

Dresden University of Technology

View shared research outputs
Top Co-Authors

Avatar

Rashim Pal Singh

Dresden University of Technology

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Ingmar Glauche

Dresden University of Technology

View shared research outputs
Researchain Logo
Decentralizing Knowledge