Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Tatyana Gurlo is active.

Publication


Featured researches published by Tatyana Gurlo.


Endocrine Reviews | 2008

Islet Amyloid in Type 2 Diabetes, and the Toxic Oligomer Hypothesis

Leena Haataja; Tatyana Gurlo; Chang J. Huang; Peter C. Butler

Type 2 diabetes (T2DM) is characterized by insulin resistance, defective insulin secretion, loss of beta-cell mass with increased beta-cell apoptosis and islet amyloid. The islet amyloid is derived from islet amyloid polypeptide (IAPP, amylin), a protein coexpressed and cosecreted with insulin by pancreatic beta-cells. In common with other amyloidogenic proteins, IAPP has the propensity to form membrane permeant toxic oligomers. Accumulating evidence suggests that these toxic oligomers, rather than the extracellular amyloid form of these proteins, are responsible for loss of neurons in neurodegenerative diseases. In this review we discuss emerging evidence to suggest that formation of intracellular IAPP oligomers may contribute to beta-cell loss in T2DM. The accumulated evidence permits the amyloid hypothesis originally developed for neurodegenerative diseases to be reformulated as the toxic oligomer hypothesis. However, as in neurodegenerative diseases, it remains unclear exactly why amyloidogenic proteins form oligomers in vivo, what their exact structure is, and to what extent these oligomers play a primary or secondary role in the cytotoxicity in what are now often called unfolded protein diseases.


Diabetes | 2013

Marked Expansion of Exocrine and Endocrine Pancreas with Incretin Therapy in Humans with increased Exocrine Pancreas Dysplasia and the potential for Glucagon-producing Neuroendocrine Tumors

Alexandra E. Butler; Martha Campbell-Thompson; Tatyana Gurlo; David W. Dawson; Mark A. Atkinson; Peter C. Butler

Controversy exists regarding the potential regenerative influences of incretin therapy on pancreatic β-cells versus possible adverse pancreatic proliferative effects. Examination of pancreata from age-matched organ donors with type 2 diabetes mellitus (DM) treated by incretin therapy (n = 8) or other therapy (n = 12) and nondiabetic control subjects (n = 14) reveals an ∼40% increased pancreatic mass in DM treated with incretin therapy, with both increased exocrine cell proliferation (P < 0.0001) and dysplasia (increased pancreatic intraepithelial neoplasia, P < 0.01). Pancreata in DM treated with incretin therapy were notable for α-cell hyperplasia and glucagon-expressing microadenomas (3 of 8) and a neuroendocrine tumor. β-Cell mass was reduced by ∼60% in those with DM, yet a sixfold increase was observed in incretin-treated subjects, although DM persisted. Endocrine cells costaining for insulin and glucagon were increased in DM compared with non-DM control subjects (P < 0.05) and markedly further increased by incretin therapy (P < 0.05). In conclusion, incretin therapy in humans resulted in a marked expansion of the exocrine and endocrine pancreatic compartments, the former being accompanied by increased proliferation and dysplasia and the latter by α-cell hyperplasia with the potential for evolution into neuroendocrine tumors.


Diabetes | 2007

High Expression Rates of Human Islet Amyloid Polypeptide Induce Endoplasmic Reticulum Stress–Mediated β-Cell Apoptosis, a Characteristic of Humans With Type 2 but Not Type 1 Diabetes

Chang Jiang Huang; Chia Yu Lin; Leena Haataja; Tatyana Gurlo; Alexandra E. Butler; Robert A. Rizza; Peter C. Butler

OBJECTIVE—Endoplasmic reticulum (ER) stress–induced apoptosis may be a common cause of cell attrition in diseases characterized by misfolding and oligomerisation of amyloidogenic proteins. The islet in type 2 diabetes is characterized by islet amyloid derived from islet amyloid polypeptide (IAPP) and increased β-cell apoptosis. We questioned the following: 1) whether IAPP-induced β-cell apoptosis is mediated by ER stress and 2) whether β-cells in type 2 diabetes are characterized by ER stress. RESEARCH DESIGN AND METHODS—The mechanism of IAPP-induced apoptosis was investigated in INS-1 cells and human IAPP (HIP) transgenic rats. ER stress in humans was investigated by β-cell C/EBP homologous protein (CHOP) expression in 7 lean nondiabetic, 12 obese nondiabetic, and 14 obese type 2 diabetic human pancreata obtained at autopsy. To assure specificity for type 2 diabetes, we also examined pancreata from eight cases of type 1 diabetes. RESULTS—IAPP induces β-cell apoptosis by ER stress in INS-1 cells and HIP rats. Perinuclear CHOP was rare in lean nondiabetic (2.6 ± 2.0%) and more frequent in obese nondiabetic (14.6 ± 3.0%) and obese diabetic (18.5 ± 3.6%) pancreata. Nuclear CHOP was not detected in lean nondiabetic and rare in obese nondiabetic (0.08 ± 0.04%) but six times higher (P < 0.01) in obese diabetic (0.49 ± 0.17%) pancreata. In type 1 diabetic pancreata, perinuclear CHOP was rare (2.5 ± 2.3%) and nuclear CHOP not detected. CONCLUSIONS—ER stress is a mechanism by which IAPP induces β-cell apoptosis and is characteristic of β-cells in humans with type 2 diabetes but not type 1 diabetes. These findings are consistent with a role of protein misfolding in β-cell apoptosis in type 2 diabetes.


Diabetes | 2009

Beneficial Endocrine but Adverse Exocrine Effects of Sitagliptin in the Human Islet Amyloid Polypeptide Transgenic Rat Model of Type 2 Diabetes: Interactions With Metformin

Aleksey V. Matveyenko; Sarah M. Dry; Heather I. Cox; Artemis Moshtaghian; Tatyana Gurlo; Ryan Galasso; Alexandra E. Butler; Peter C. Butler

OBJECTIVE We sought to establish the extent and mechanisms by which sitagliptin and metformin singly and in combination modify islet disease progression in human islet amyloid polypeptide transgenic (HIP) rats, a model for type 2 diabetes. RESEARCH DESIGN AND METHODS HIP rats were treated with sitagliptin, metformin, sitagliptin plus metformin, or no drug as controls for 12 weeks. Fasting blood glucose, insulin sensitivity, and β-cell mass, function, and turnover were measured in each group. RESULTS Sitagliptin plus metformin had synergistic effects to preserve β-cell mass in HIP rats. Metformin more than sitagliptin inhibited β-cell apoptosis. Metformin enhanced hepatic insulin sensitivity; sitagliptin enhanced extrahepatic insulin sensitivity with a synergistic effect in combination. β-Cell function was partially preserved by sitagliptin plus metformin. However, sitagliptin treatment was associated with increased pancreatic ductal turnover, ductal metaplasia, and, in one rat, pancreatitis. CONCLUSIONS The combination of metformin and sitagliptin had synergistic actions to preserve β-cell mass and function and enhance insulin sensitivity in the HIP rat model of type 2 diabetes. However, adverse actions of sitagliptin treatment on exocrine pancreas raise concerns that require further evaluation.


Diabetes | 2007

Toxic Human Islet Amyloid Polypeptide (h-IAPP) Oligomers Are Intracellular, and Vaccination to Induce Anti-Toxic Oligomer Antibodies Does Not Prevent h-IAPP–Induced β-Cell Apoptosis in h-IAPP Transgenic Mice

Chia Yu Lin; Tatyana Gurlo; Rakez Kayed; Alexandra E. Butler; Leena Haataja; Charles G. Glabe; Peter C. Butler

OBJECTIVE—Islets in type 2 diabetes are characterized by a deficit in β-cells, increased β-cell apoptosis, and islet amyloid derived from islet amyloid polypeptide (IAPP). The toxic form of amyloidogenic protein oligomers are distinct and smaller than amyloid fibrils and act by disrupting membranes. Using antibodies that bind to toxic IAPP oligomers (but not IAPP monomers or fibrils) and a vaccination-based approach, we sought to establish whether IAPP toxic oligomers form intra- or extracellularly and whether vaccination to induce anti-toxic oligomer antibodies prevents IAPP-induced apoptosis in human IAPP (h-IAPP) transgenic mice. RESEARCH DESIGN AND METHODS—Pancreas was sampled from two h-IAPP transgenic mouse models and examined by immunohistochemistry for toxic oligomers. The same murine models were vaccinated with toxic oligomers of Alzheimer β protein (AβP1–40) and anti-oligomer titers, and blood glucose and islet pathology were monitored. RESULTS—Toxic oligomers were detected intracellularly in ∼20–40% of h-IAPP transgenic β-cells. Vaccine induced high titers of anti–h-IAPP toxic oligomers in both transgenic models, but β-cell apoptosis was, if anything, further increased in vaccinated mice, so that neither loss of β-cell mass nor diabetes onset was delayed. CONCLUSIONS—IAPP toxic oligomers form in h-IAPP transgenic mouse models, and anti-toxic oligomer antibodies do not prevent h-IAPP–induced β-cell apoptosis. These data suggest that prevention of h-IAPP oligomer formation may be more useful than a vaccination-based approach in the prevention of type 2 diabetes.


American Journal of Pathology | 2010

Evidence for Proteotoxicity in β Cells in Type 2 Diabetes: Toxic Islet Amyloid Polypeptide Oligomers Form Intracellularly in the Secretory Pathway

Tatyana Gurlo; Sergey Ryazantsev; Chang Jiang Huang; Michael W. Yeh; Howard A. Reber; O. Joe Hines; Timothy D. O'Brien; Charles G. Glabe; Peter C. Butler

The islet in type 2 diabetes mellitus (T2DM) is characterized by a deficit in beta cells and islet amyloid derived from islet amyloid polypeptide (IAPP), a protein co-expressed with insulin by beta cells. It is increasingly appreciated that the toxic form of amyloidogenic proteins is not amyloid but smaller membrane-permeant oligomers. Using an antibody specific for toxic oligomers and cryo-immunogold labeling in human IAPP transgenic mice, human insulinoma and pancreas from humans with and without T2DM, we sought to establish the abundance and sites of formation of IAPP toxic oligomers. We conclude that IAPP toxic oligomers are formed intracellularly within the secretory pathway in T2DM. Most striking, IAPP toxic oligomers appear to disrupt membranes of the secretory pathway, and then when adjacent to mitochondria, disrupt mitochondrial membranes. Toxic oligomer-induced secretory pathway and mitochondrial membrane disruption is a novel mechanism to account for cellular dysfunction and apoptosis in T2DM.


Cell Death & Differentiation | 2011

Human-IAPP disrupts the autophagy/lysosomal pathway in pancreatic β-cells: protective role of p62-positive cytoplasmic inclusions

J F Rivera; Tatyana Gurlo; Marie Daval; Chang-jiang Huang; Aleksey V. Matveyenko; Peter C. Butler; Safia Costes

In type II diabetes (T2DM), there is a deficit in β-cells, increased β-cell apoptosis and formation of intracellular membrane-permeant oligomers of islet amyloid polypeptide (IAPP). Human-IAPP (h-IAPP) is an amyloidogenic protein co-expressed with insulin by β-cells. IAPP expression is increased with obesity, the major risk factor for T2DM. In this study we report that increased expression of human-IAPP led to impaired autophagy, due at least in part to the disruption of lysosome-dependant degradation. This action of IAPP to alter lysosomal clearance in vivo depends on its propensity to form toxic oligomers and is independent of the confounding effect of hyperglycemia. We report that the scaffold protein p62 that delivers polyubiquitinated proteins to autophagy may have a protective role against human-IAPP-induced apoptosis, apparently by sequestrating protein targets for degradation. Finally, we found that inhibition of lysosomal degradation increases vulnerability of β-cells to h-IAPP-induced toxicity and, conversely, stimulation of autophagy protects β-cells from h-IAPP-induced apoptosis. Collectively, these data imply an important role for the p62/autophagy/lysosomal degradation system in protection against toxic oligomer-induced apoptosis.


Diabetes | 2012

Pulsatile Portal Vein Insulin Delivery Enhances Hepatic Insulin Action and Signaling

Aleksey V. Matveyenko; David Liuwantara; Tatyana Gurlo; David Kirakossian; Chiara Dalla Man; Claudio Cobelli; Morris F. White; Kyle D. Copps; Elena Volpi; Satoshi Fujita; Peter C. Butler

Insulin is secreted as discrete insulin secretory bursts at ∼5-min intervals into the hepatic portal vein, these pulses being attenuated early in the development of type 1 and type 2 diabetes mellitus (T2DM). Intraportal insulin infusions (pulsatile, constant, or reproducing that in T2DM) indicated that the pattern of pulsatile insulin secretion delivered via the portal vein is important for hepatic insulin action and, therefore, presumably for hepatic insulin signaling. To test this, we examined hepatic insulin signaling in rat livers exposed to the same three patterns of portal vein insulin delivery by use of sequential liver biopsies in anesthetized rats. Intraportal delivery of insulin in a constant versus pulsatile pattern led to delayed and impaired activation of hepatic insulin receptor substrate (IRS)-1 and IRS-2 signaling, impaired activation of downstream insulin signaling effector molecules AKT and Foxo1, and decreased expression of glucokinase (Gck). We further established that hepatic Gck expression is decreased in the HIP rat model of T2DM, a defect that correlated with a progressive defect of pulsatile insulin secretion. We conclude that the physiological pulsatile pattern of insulin delivery is important in hepatic insulin signaling and glycemic control. Hepatic insulin resistance in diabetes is likely in part due to impaired pulsatile insulin secretion.


Diabetes | 2009

Successful Versus Failed Adaptation to High-Fat Diet–Induced Insulin Resistance: The Role of IAPP-Induced β-Cell Endoplasmic Reticulum Stress

Aleksey V. Matveyenko; Tatyana Gurlo; Marie Daval; Alexandra E. Butler; Peter C. Butler

OBJECTIVE Obesity is a known risk factor for type 2 diabetes. However, most obese individuals do not develop diabetes because they adapt to insulin resistance by increasing β-cell mass and insulin secretion. Islet pathology in type 2 diabetes is characterized by β-cell loss, islet amyloid derived from islet amyloid polypeptide (IAPP), and increased β-cell apoptosis characterized by endoplasmic reticulum (ER) stress. We hypothesized that IAPP-induced ER stress distinguishes successful versus unsuccessful islet adaptation to insulin resistance. RESEARCH DESIGN AND METHODS To address this, we fed wild-type (WT) and human IAPP transgenic (HIP) rats either 10 weeks of regular chow or a high-fat diet and prospectively examined the relations among β-cell mass and turnover, β-cell ER stress, insulin secretion, and insulin sensitivity. RESULTS A high-fat diet led to comparable insulin resistance in WT and HIP rats. WT rats compensated with increased insulin secretion and β-cell mass. In HIP rats, in contrast, neither β-cell function nor mass compensated for the increased insulin demand, leading to diabetes. The failure to increase β-cell mass in HIP rats was the result of ER stress–induced β-cell apoptosis that increased in proportion to diet-induced insulin resistance. CONCLUSIONS IAPP-induced ER stress distinguishes the successful versus unsuccessful islet adaptation to a high-fat diet in rats. These studies are consistent with the hypothesis that IAPP oligomers contribute to increased β-cell apoptosis and β-cell failure in humans with type 2 diabetes.


Diabetes | 2013

β-Cell Failure in Type 2 Diabetes: A Case of Asking Too Much of Too Few?

Safia Costes; Ralf Langen; Tatyana Gurlo; Aleksey V. Matveyenko; Peter C. Butler

The islet in type 2 diabetes (T2DM) is characterized by a deficit in β-cells, increased β-cell apoptosis, and extracellular amyloid deposits derived from islet amyloid polypeptide (IAPP). In the absence of longitudinal studies, it is unknown if the low β-cell mass in T2DM precedes diabetes onset (is a risk factor for diabetes) or develops as a consequence of the disease process. Although insulin resistance is a risk factor for T2DM, most individuals who are insulin resistant do not develop diabetes. By inference, an increased β-cell workload results in T2DM in some but not all individuals. We propose that the extent of the β-cell mass that develops during childhood may underlie subsequent successful or failed adaptation to insulin resistance in later life. We propose that a low innate β-cell mass in the face of subsequent insulin resistance may expose β-cells to a burden of insulin and IAPP biosynthetic demand that exceeds the cellular capacity for protein folding and trafficking. If this threshold is crossed, intracellular toxic IAPP membrane permeant oligomers (cylindrins) may form, compromising β-cell function and inducing β-cell apoptosis.

Collaboration


Dive into the Tatyana Gurlo's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Safia Costes

University of Montpellier

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Marie Daval

University of California

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Chia Yu Lin

University of California

View shared research outputs
Researchain Logo
Decentralizing Knowledge