Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Tatyana Polenova is active.

Publication


Featured researches published by Tatyana Polenova.


Journal of the American Chemical Society | 2010

Solid-State NMR Studies of HIV-1 Capsid Protein Assemblies

Yun Han; Jinwoo Ahn; Jason Concel; In-Ja L. Byeon; Angela M. Gronenborn; Jun Yang; Tatyana Polenova

In mature HIV-1 virions, the 26.6 kDa CA protein is assembled into a characteristic cone-shaped core (capsid) that encloses the RNA viral genome. The assembled capsid structure is best described by a fullerene cone model that is made up from a hexameric lattice containing a variable number of CA pentamers, thus allowing for closure of tubular or conical structures. In this paper, we present a solid-state NMR analysis of the wild-type HIV-1 CA protein, prepared as conical and spherical assemblies that are stable and are not affected by magic angle spinning of the samples at frequencies between 10 and 25 kHz. Multidimensional homo- and heteronuclear correlation spectra of CA assemblies of uniformly (13)C,(15)N-labeled CA exhibit narrow lines, indicative of the conformational homogeneity of the protein in these assemblies. For the conical assemblies, partial residue-specific resonance assignments were obtained. Analysis of the NMR spectra recorded for the conical and spherical assemblies indicates that the CA protein structure is not significantly different in the different morphologies. The present results demonstrate that the assemblies of CA protein are amenable to detailed structural analysis by solid-state NMR spectroscopy.


Journal of the American Chemical Society | 2012

Motions on the millisecond time scale and multiple conformations of HIV-1 capsid protein: implications for structural polymorphism of CA assemblies.

In-Ja L. Byeon; Guangjin Hou; Yun Han; Christopher L. Suiter; Jinwoo Ahn; Jinwon Jung; Chang-Hyeock Byeon; Angela M. Gronenborn; Tatyana Polenova

The capsid protein (CA) of human immunodeficiency virus 1 (HIV-1) assembles into a cone-like structure that encloses the viral RNA genome. Interestingly, significant heterogeneity in shape and organization of capsids can be observed in mature HIV-1 virions. In vitro, CA also exhibits structural polymorphism and can assemble into various morphologies, such as cones, tubes, and spheres. Many intermolecular contacts that are critical for CA assembly are formed by its C-terminal domain (CTD), a dimerization domain, which was found to adopt different orientations in several X-ray and NMR structures of the CTD dimer and full-length CA proteins. Tyr145 (Y145), residue two in our CTD construct used for NMR structure determination, but not present in the crystallographic constructs, was found to be crucial for infectivity and engaged in numerous interactions at the CTD dimer interface. Here we investigate the origin of CA structural plasticity using solid-state NMR and solution NMR spectroscopy. In the solid state, the hinge region connecting the NTD and CTD is flexible on the millisecond time scale, as evidenced by the backbone motions of Y145 in CA conical assemblies and in two CTD constructs (137-231 and 142-231), allowing the protein to access multiple conformations essential for pleimorphic capsid assemblies. In solution, the CTD dimer exists as two major conformers, whose relative populations differ for the different CTD constructs. In the longer CTD (144-231) construct that contains the hinge region between the NTD and CTD, the populations of the two conformers are likely determined by the protonation state of the E175 side chain that is located at the dimer interface and within hydrogen-bonding distance of the W184 side chain on the other monomer. At pH 6.5, the major conformer exhibits the same dimer interface as full-length CA. In the short CTD (150-231) construct, no pH-dependent conformational shift is observed. These findings suggest that the presence of structural plasticity at the CTD dimer interface permits pleiotropic HIV-1 capsid assembly, resulting in varied capsid morphologies.


Journal of the American Chemical Society | 2011

1H-13C/1H-15N heteronuclear dipolar recoupling by R-symmetry sequences under fast magic angle spinning for dynamics analysis of biological and organic solids.

Guangjin Hou; In-Ja L. Byeon; Jinwoo Ahn; Angela M. Gronenborn; Tatyana Polenova

Fast magic angle spinning (MAS) NMR spectroscopy is becoming increasingly important in structural and dynamics studies of biological systems and inorganic materials. Superior spectral resolution due to the efficient averaging of the dipolar couplings can be attained at MAS frequencies of 40 kHz and higher with appropriate decoupling techniques, while proton detection gives rise to significant sensitivity gains, therefore making fast MAS conditions advantageous across the board compared with the conventional slow- and moderate-MAS approaches. At the same time, many of the dipolar recoupling approaches that currently constitute the basis for structural and dynamics studies of solid materials and that are designed for MAS frequencies of 20 kHz and below, fail above 30 kHz. In this report, we present an approach for (1)H-(13)C/(1)H-(15)N heteronuclear dipolar recoupling under fast MAS conditions using R-type symmetry sequences, which is suitable even for fully protonated systems. A series of rotor-synchronized R-type symmetry pulse schemes are explored for the determination of structure and dynamics in biological and organic systems. The investigations of the performance of the various RN(n)(v)-symmetry sequences at the MAS frequency of 40 kHz experimentally and by numerical simulations on [U-(13)C,(15)N]-alanine and [U-(13)C,(15)N]-N-acetyl-valine, revealed excellent performance for sequences with high symmetry number ratio (N/2n > 2.5). Further applications of this approach are presented for two proteins, sparsely (13)C/uniformly (15)N-enriched CAP-Gly domain of dynactin and U-(13)C,(15)N-Tyr enriched C-terminal domain of HIV-1 CA protein. Two-dimensional (2D) and 3D R16(3)(2)-based DIPSHIFT experiments carried out at the MAS frequency of 40 kHz, yielded site-specific (1)H-(13)C/(1)H-(15)N heteronuclear dipolar coupling constants for CAP-Gly and CTD CA, reporting on the dynamic behavior of these proteins on time scales of nano- to microseconds. The R-symmetry-based dipolar recoupling under fast MAS is expected to find numerous applications in studies of protein assemblies and organic solids by MAS NMR spectroscopy.


Journal of Inorganic Biochemistry | 2009

Chloro-substituted dipicolinate vanadium complexes: synthesis, solution, solid-state, and insulin-enhancing properties.

Jason J. Smee; Jason A. Epps; Kristopher J. Ooms; Stephanie E. Bolte; Tatyana Polenova; Bharat Baruah; Luqin Yang; Wenjun Ding; Ming Li; Gail R. Willsky; Agnete la Cour; Oren P. Anderson; Debbie C. Crans

Three vanadium complexes of chlorodipicolinic acid (4-chloro-2,6-dipicolinic acid) in oxidation states III, IV, and V were prepared and their properties characterized across the oxidation states. In addition, the series of hydroxylamido, methylhydroxylamido, dimethylhydroxylamido, and diethylhydroxylamido complexes were prepared from the chlorodipicolinato dioxovanadium(V) complex. The vanadium(V) compounds were characterized in solution by (51)V and (1)H NMR and in the solid-state by X-ray diffraction and (51)V NMR. Density Functional Theory (DFT) calculations were performed to evaluate the experimental parameters and further describes the electronic structure of the complex. The small structural changes that do occur in bond lengths and angles and partial charges on different atoms are minor compared to the charge features that are responsible for the majority of the electric field gradient tensor. The EPR parameters of the vanadium(IV) complex were characterized and compared to the corresponding dipicolinate complex. The chemical properties of the chlorodipicolinate compounds are discussed and correlated with their insulin-enhancing activity in streptozoticin (STZ) induced diabetic Wistar rats. The effect of the chloro-substitution on lowering diabetic hyperglycemia was evaluated and differences were found depending on the compounds oxidation state similar as was observed for the vanadium III, IV and V dipicolinate complexes (P. Buglyo, D.C. Crans, E.M. Nagy, R.L. Lindo, L. Yang, J.J. Smee, W. Jin, L.-H. Chi, M.E. Godzala III, G.R. Willsky, Inorg. Chem. 44 (2005) 5416-5427). However, a linear correlation of oxidation states with efficacy was not observed, which suggests that the differences in mode of action are not simply an issue of redox equivalents. Importantly, our results contrast the previous observation with the vanadium-picolinate complexes, where the halogen substituents increased the insulin-enhancing properties of the complex (T. Takino, H. Yasui, A. Yoshitake, Y. Hamajima, R. Matsushita, J. Takada, H. Sakurai, J. Biol. Inorg. Chem. 6 (2001) 133-142).


Accounts of Chemical Research | 2013

Probing structure and dynamics of protein assemblies by magic angle spinning NMR spectroscopy.

Si Yan; Christopher L. Suiter; Guangjin Hou; Huilan Zhang; Tatyana Polenova

In living organisms, biological molecules often organize into multicomponent complexes. Such assemblies consist of various proteins and carry out essential functions, ranging from cell division, transport, and energy transduction to catalysis, signaling, and viral infectivity. To understand the biological functions of these assemblies, in both healthy and disease states, researchers need to study their three-dimensional architecture and molecular dynamics. To date, the large size, the lack of inherent long-range order, and insolubility have made atomic resolution studies of many protein assemblies challenging or impractical using traditional structural biology methods such as X-ray diffraction and solution NMR spectroscopy. In the past 10 years, we have focused our work on the development and application of magic angle spinning solid-state NMR (MAS NMR) methods to characterize large protein assemblies at atomic-level resolution. In this Account, we discuss the rapid progress in the field of MAS NMR spectroscopy, citing work from our laboratory and others on methodological developments that have facilitated the in-depth analysis of biologically important protein assemblies. We emphasize techniques that yield enhanced sensitivity and resolution, such as fast MAS (spinning frequencies of 40 kHz and above) and nonuniform sampling protocols for data acquisition and processing. We also discuss the experiments for gaining distance restraints and for recoupling anisotropic tensorial interactions under fast MAS conditions. We give an overview of sample preparation approaches when working with protein assemblies. Following the overview of contemporary MAS NMR methods, we present case studies into the structure and dynamics of two classes of biological systems under investigation in our laboratory. We will first turn our attention to cytoskeletal microtubule motor proteins including mammalian dynactin and dynein light chain 8. We will then discuss protein assemblies from the HIV-1 retrovirus.


Journal of Physical Chemistry B | 2012

Enhanced Sensitivity by Nonuniform Sampling Enables Multidimensional MAS NMR Spectroscopy of Protein Assemblies

Sivakumar Paramasivam; Christopher L. Suiter; Guangjin Hou; Shangjin Sun; Melissa R. Palmer; Jeffrey C. Hoch; David Rovnyak; Tatyana Polenova

We report dramatic sensitivity enhancements in multidimensional MAS NMR spectra by the use of nonuniform sampling (NUS) and introduce maximum entropy interpolation (MINT) processing that assures the linearity between the time and frequency domains of the NUS acquired data sets. A systematic analysis of sensitivity and resolution in 2D and 3D NUS spectra reveals that with NUS, at least 1.5- to 2-fold sensitivity enhancement can be attained in each indirect dimension without compromising the spectral resolution. These enhancements are similar to or higher than those attained by the newest-generation commercial cryogenic probes. We explore the benefits of this NUS/MaxEnt approach in proteins and protein assemblies using 1-73-(U-(13)C,(15)N)/74-108-(U-(15)N) Escherichia coli thioredoxin reassembly. We demonstrate that in thioredoxin reassembly, NUS permits acquisition of high-quality 3D-NCACX spectra, which are inaccessible with conventional sampling due to prohibitively long experiment times. Of critical importance, issues that hinder NUS-based SNR enhancement in 3D-NMR of liquids are mitigated in the study of solid samples in which theoretical enhancements on the order of 3-4 fold are accessible by compounding the NUS-based SNR enhancement of each indirect dimension. NUS/MINT is anticipated to be widely applicable and advantageous for multidimensional heteronuclear MAS NMR spectroscopy of proteins, protein assemblies, and other biological systems.


Nature Communications | 2016

Cyclophilin A stabilizes the HIV-1 capsid through a novel non-canonical binding site

Chuang Liu; Juan R. Perilla; Jiying Ning; Manman Lu; Guangjin Hou; Ruben Ramalho; Benjamin A. Himes; Gongpu Zhao; Gregory J. Bedwell; In Ja L. Byeon; Jinwoo Ahn; Angela M. Gronenborn; Peter E. Prevelige; Itay Rousso; Christopher Aiken; Tatyana Polenova; Klaus Schulten; Peijun Zhang

The host cell factor cyclophilin A (CypA) interacts directly with the HIV-1 capsid and regulates viral infectivity. Although the crystal structure of CypA in complex with the N-terminal domain of the HIV-1 capsid protein (CA) has been known for nearly two decades, how CypA interacts with the viral capsid and modulates HIV-1 infectivity remains unclear. We determined the cryoEM structure of CypA in complex with the assembled HIV-1 capsid at 8-Å resolution. The structure exhibits a distinct CypA-binding pattern in which CypA selectively bridges the two CA hexamers along the direction of highest curvature. EM-guided all-atom molecular dynamics simulations and solid-state NMR further reveal that the CypA-binding pattern is achieved by single-CypA molecules simultaneously interacting with two CA subunits, in different hexamers, through a previously uncharacterized non-canonical interface. These results provide new insights into how CypA stabilizes the HIV-1 capsid and is recruited to facilitate HIV-1 infection.


Journal of the American Chemical Society | 2013

Multidimensional magic angle spinning NMR spectroscopy for site-resolved measurement of proton chemical shift anisotropy in biological solids.

Guangjin Hou; Sivakumar Paramasivam; Si Yan; Tatyana Polenova; Alexander J. Vega

The proton chemical shift (CS) tensor is a sensitive probe of structure and hydrogen bonding. Highly accurate quantum-chemical protocols exist for computation of (1)H magnetic shieldings in the various contexts, making proton chemical shifts potentially a powerful predictor of structural and electronic properties. However, (1)H CS tensors are not yet widely used in protein structure calculation due to scarcity of experimental data. While isotropic proton shifts can be readily measured in proteins even in the solid state, determination of the (1)H chemical shift anisotropy (CSA) tensors remains challenging, particularly in molecules containing multiple proton sites. We present a method for site-resolved measurement of amide proton CSAs in fully protonated solids under magic angle spinning. The approach consists of three concomitant 3D experiments yielding spectra determined by either mainly (1)H CSA, mainly (1)H–(15)N dipolar, or combined (1)H CSA and (1)H–(15)N dipolar interactions. The anisotropic interactions are recoupled using RN-sequences of appropriate symmetry, such as R12(1)(4), and (15)N/(13)C isotropic CS dimensions are introduced via a short selective (1)H–(15)N cross-polarization step. Accurate (1)H chemical shift tensor parameters are extracted by simultaneous fit of the lineshapes recorded in the three spectra. An application of this method is presented for an 89-residue protein, U-(13)C,(15)N-CAP-Gly domain of dynactin. The CSA parameters determined from the triple fits correlate with the hydrogen-bonding distances, and the trends are in excellent agreement with the prior solution NMR results. This approach is generally suited for recording proton CSA parameters in various biological and organic systems, including protein assemblies and nucleic acids.


Journal of the American Chemical Society | 2008

Magic angle spinning NMR experiments for structural studies of differentially enriched protein interfaces and protein assemblies.

Jun Yang; Maria Luisa Tasayco; Tatyana Polenova

Protein-protein interactions play vital roles in numerous biological processes. These interactions often result in formation of insoluble and noncrystalline protein assemblies. Solid-state NMR spectroscopy is rapidly emerging as a premier method for structural analysis of such systems. We introduce a family of two-dimensional magic angle spinning (MAS) NMR experiments for structural studies of differentially isotopically enriched protein assemblies. Using 1-73((13)C,(15)N)/74-108((15)N) labeled thioredoxin reassembly, we demonstrate that dipolar dephasing followed by proton-assisted heteronuclear magnetization transfer yields long-range (15)N-(13)C correlations arising exclusively from the interfaces formed by the pair of differentially enriched complementary fragments of thioredoxin. Incorporation of dipolar dephasing into the (15)N proton-driven spin diffusion and into the (1)H-(15)N FSLG-HETCOR sequences permits (1)H and (15)N resonance assignments of the 74-108((15)N) enriched C-terminal fragment of thioredoxin alone. The differential isotopic labeling scheme and the NMR experiments demonstrated here allow for structural analysis of both the interface and each interacting protein. Isotope editing of the magnetization transfers results in spectral simplification, and therefore larger protein assemblies are expected to be amenable to these experiments.


Journal of the American Chemical Society | 2013

Magic Angle Spinning NMR Reveals Sequence-Dependent Structural Plasticity, Dynamics, and the Spacer Peptide 1 Conformation in HIV-1 Capsid Protein Assemblies

Yun Han; Guangjin Hou; Christopher L. Suiter; Jinwoo Ahn; In-Ja L. Byeon; Andrew S. Lipton; Sarah D. Burton; Ivan Hung; Peter L. Gor’kov; Zhehong Gan; William W. Brey; David Rice; Angela M. Gronenborn; Tatyana Polenova

A key stage in HIV-1 maturation toward an infectious virion requires sequential proteolytic cleavage of the Gag polyprotein leading to the formation of a conical capsid core that encloses the viral RNA genome and a small complement of proteins. The final step of this process involves severing the SP1 peptide from the CA-SP1 maturation intermediate, which triggers the condensation of the CA protein into the capsid shell. The details of the overall mechanism, including the conformation of the SP1 peptide in CA-SP1, are still under intense debate. In this report, we examine tubular assemblies of CA and the CA-SP1 maturation intermediate using magic angle spinning (MAS) NMR spectroscopy. At magnetic fields of 19.9 T and above, outstanding quality 2D and 3D MAS NMR spectra were obtained for tubular CA and CA-SP1 assemblies, permitting resonance assignments for subsequent detailed structural characterization. Dipolar- and scalar-based correlation experiments unequivocally indicate that SP1 peptide is in a random coil conformation and mobile in the assembled CA-SP1. Analysis of two CA protein sequence variants reveals that, unexpectedly, the conformations of the SP1 tail, the functionally important CypA loop, and the loop preceding helix 8 are modulated by residue variations at distal sites. These findings provide support for the role of SP1 as a trigger of the disassembly of the immature CA capsid for its subsequent de novo reassembly into mature cores and establish the importance of sequence-dependent conformational plasticity in CA assembly.

Collaboration


Dive into the Tatyana Polenova's collaboration.

Researchain Logo
Decentralizing Knowledge