Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Taylor H. Ricketts is active.

Publication


Featured researches published by Taylor H. Ricketts.


BioScience | 2001

Terrestrial Ecoregions of the World: A New Map of Life on Earth

David Olson; Eric Dinerstein; Eric Wikramanayake; Neil D. Burgess; George V. N. Powell; Emma C. Underwood; A Jennifer; Illanga Itoua; Holly Strand; John Morrison; Thomas F. Allnutt; Taylor H. Ricketts; Yumiko Kura; John F. Lamoreux; Prashant Hedao; Kenneth R. Kassem

T tapestry of life on Earth is unraveling as humans increasingly dominate and transform natural ecosystems. Scarce resources and dwindling time force conservationists to target their actions to stem the loss of biodiversity— a pragmatic approach, given the highly uneven distribution of species and threats (Soulé and Kohm 1989, Olson and Dinerstein 1998, Mace et al. 2000, Myers et al. 2000). Unfortunately, the ability to focus strategically is hindered by the absence of a global biodiversity map with sufficient biogeographic resolution to accurately reflect the complex distribution of the Earth’s natural communities. Without such a map, many distinctive biotas remain unrecognized. In this article, we address the disparity in resolution between maps currently available for global conservation planning and the reality of the Earth’s intricate patterns of life. We have developed a detailed map of the terrestrial ecoregions of the world that is better suited to identify areas of outstanding biodiversity and representative communities (Noss 1992). We define ecoregions as relatively large units of land containing a distinct assemblage of natural communities and species, with boundaries that approximate the original extent of natural communities prior to major land-use change. Our ecoregion map offers features that enhance its utility for conservation planning at global and regional scales: comprehensive coverage, a classification framework that builds on existing biogeographic knowledge, and a detailed level of biogeographic resolution. Ecoregions reflect the distributions of a broad range of fauna and flora across the entire planet, from the vast Sahara Desert to the diminutive Clipperton Island (eastern Pacific Ocean). They are classified within a system familiar to all biologists—biogeographic realms and biomes. Ecoregions, representing distinct biotas (Dasmann 1973, 1974, Udvardy 1975), are nested within the biomes and realms and, together, these provide a framework for comparisons among units and the identification of representative habitats and species assemblages. Although our ecoregions are intended primarily as units for conservation action, they are built on the foundations of classical biogeography and reflect extensive collaboration with over 1000 biogeographers, taxonomists, conservation biologists, and ecologists from around the world. Consequently, ecoregions are likely to reflect the distribution of species and communities more accurately than do units based on global and regional models derived from gross biophysical features, such as rainfall and temperature (Holdridge 1967, Walter and Box 1976, Schulz 1995, Bailey 1998), vegetation structure (UNESCO 1969, deLaubenfels 1975, Schmidthüsen 1976), or


Frontiers in Ecology and the Environment | 2009

Modeling multiple ecosystem services, biodiversity conservation, commodity production, and tradeoffs at landscape scales

Erik Nelson; Guillermo Mendoza; James Regetz; Stephen Polasky; Heather Tallis; DRichard Cameron; Kai M. A. Chan; Gretchen C. Daily; Joshua H. Goldstein; Peter Kareiva; Eric Lonsdorf; Robin Naidoo; Taylor H. Ricketts; MRebecca Shaw

Nature provides a wide range of benefits to people. There is increasing consensus about the importance of incorporating these “ecosystem services” into resource management decisions, but quantifying the levels and values of these services has proven difficult. We use a spatially explicit modeling tool, Integrated Valuation of Ecosystem Services and Tradeoffs (InVEST), to predict changes in ecosystem services, biodiversity conservation, and commodity production levels. We apply InVEST to stakeholder-defined scenarios of land-use/land-cover change in the Willamette Basin, Oregon. We found that scenarios that received high scores for a variety of ecosystem services also had high scores for biodiversity, suggesting there is little tradeoff between biodiversity conservation and ecosystem services. Scenarios involving more development had higher commodity production values, but lower levels of biodiversity conservation and ecosystem services. However, including payments for carbon sequestration alleviates this tradeoff. Quantifying ecosystem services in a spatially explicit manner, and analyzing tradeoffs between them, can help to make natural resource decisions more effective, efficient, and defensible.


The American Naturalist | 2001

The Matrix Matters: Effective Isolation in Fragmented Landscapes

Taylor H. Ricketts

Traditional approaches to the study of fragmented landscapes invoke an island‐ocean model and assume that the nonhabitat matrix surrounding remnant patches is uniform. Patch isolation, a crucial parameter to the predictions of island biogeography and metapopulation theories, is measured by distance alone. To test whether the type of interpatch matrix can contribute significantly to patch isolation, I conducted a mark‐recapture study on a butterfly community inhabiting meadows in a naturally patchy landscape. I used maximum likelihood to estimate the relative resistances of the two major matrix types (willow thicket and conifer forest) to butterfly movement between meadow patches. For four of the six butterfly taxa (subfamilies or tribes) studied, conifer was 3–12 times more resistant than willow. For the two remaining taxa (the most vagile and least vagile in the community), resistance estimates for willow and conifer were not significantly different, indicating that responses to matrix differ even among closely related species. These results suggest that the surrounding matrix can significantly influence the “effective isolation” of habitat patches, rendering them more or less isolated than simple distance or classic models would indicate. Modification of the matrix may provide opportunities for reducing patch isolation and thus the extinction risk of populations in fragmented landscapes.


Frontiers in Ecology and the Environment | 2009

Ecosystem Services in Decision Making: Time to Deliver

Gretchen C. Daily; Stephen Polasky; Joshua H. Goldstein; Peter Kareiva; Harold A. Mooney; Liba Pejchar; Taylor H. Ricketts; James E. Salzman; Robert Shallenberger

Over the past decade, efforts to value and protect ecosystem services have been promoted by many as the last, best hope for making conservation mainstream – attractive and commonplace worldwide. In theory, if we can help individuals and institutions to recognize the value of nature, then this should greatly increase investments in conservation, while at the same time fostering human well-being. In practice, however, we have not yet developed the scientific basis, nor the policy and finance mechanisms, for incorporating natural capital into resource- and land-use decisions on a large scale. Here, we propose a conceptual framework and sketch out a strategic plan for delivering on the promise of ecosystem services, drawing on emerging examples from Hawai‘i. We describe key advances in the science and practice of accounting for natural capital in the decisions of individuals, communities, corporations, and governments.


Applied and Environmental Microbiology | 2001

Counting the Uncountable: Statistical Approaches to Estimating Microbial Diversity

Jennifer B. Hughes; Jessica J. Hellmann; Taylor H. Ricketts; Brendan J. M. Bohannan

All biologists who sample natural communities are plagued with the problem of how well a sample reflects a communitys “true” diversity. New genetic techniques have revealed extensive microbial diversity that was previously undetected with culture-dependent methods and morphological


Proceedings of the National Academy of Sciences of the United States of America | 2008

Global mapping of ecosystem services and conservation priorities

Robin Naidoo; Andrew Balmford; Robert Costanza; Brendan Fisher; Rhys E. Green; Bernhard Lehner; T.R. Malcolm; Taylor H. Ricketts

Global efforts to conserve biodiversity have the potential to deliver economic benefits to people (i.e., “ecosystem services”). However, regions for which conservation benefits both biodiversity and ecosystem services cannot be identified unless ecosystem services can be quantified and valued and their areas of production mapped. Here we review the theory, data, and analyses needed to produce such maps and find that data availability allows us to quantify imperfect global proxies for only four ecosystem services. Using this incomplete set as an illustration, we compare ecosystem service maps with the global distributions of conventional targets for biodiversity conservation. Our preliminary results show that regions selected to maximize biodiversity provide no more ecosystem services than regions chosen randomly. Furthermore, spatial concordance among different services, and between ecosystem services and established conservation priorities, varies widely. Despite this lack of general concordance, “win–win” areas—regions important for both ecosystem services and biodiversity—can be usefully identified, both among ecoregions and at finer scales within them. An ambitious interdisciplinary research effort is needed to move beyond these preliminary and illustrative analyses to fully assess synergies and trade-offs in conserving biodiversity and ecosystem services.


Ecology Letters | 2008

Landscape effects on crop pollination services: are there general patterns?

Taylor H. Ricketts; James Regetz; Ingolf Steffan-Dewenter; Saul A. Cunningham; Claire Kremen; Anne K. Bogdanski; Barbara Gemmill-Herren; Sarah S. Greenleaf; Alexandra-Maria Klein; Margaret M. Mayfield; Laura A. Morandin; Alfred Ochieng; Blande F. Viana

Pollination by bees and other animals increases the size, quality, or stability of harvests for 70% of leading global crops. Because native species pollinate many of these crops effectively, conserving habitats for wild pollinators within agricultural landscapes can help maintain pollination services. Using hierarchical Bayesian techniques, we synthesize the results of 23 studies - representing 16 crops on five continents - to estimate the general relationship between pollination services and distance from natural or semi-natural habitats. We find strong exponential declines in both pollinator richness and native visitation rate. Visitation rate declines more steeply, dropping to half of its maximum at 0.6 km from natural habitat, compared to 1.5 km for richness. Evidence of general decline in fruit and seed set - variables that directly affect yields - is less clear. Visitation rate drops more steeply in tropical compared with temperate regions, and slightly more steeply for social compared with solitary bees. Tropical crops pollinated primarily by social bees may therefore be most susceptible to pollination failure from habitat loss. Quantifying these general relationships can help predict consequences of land use change on pollinator communities and crop productivity, and can inform landscape conservation efforts that balance the needs of native species and people.


Nature | 2004

Global Patterns in Human Consumption of Net Primary Production

Marc L. Imhoff; Lahouari Bounoua; Taylor H. Ricketts; Colby Loucks; Robert C. Harriss; William T. Lawrence

The human population and its consumption profoundly affect the Earths ecosystems. A particularly compelling measure of humanitys cumulative impact is the fraction of the planets net primary production that we appropriate for our own use. Net primary production—the net amount of solar energy converted to plant organic matter through photosynthesis—can be measured in units of elemental carbon and represents the primary food energy source for the worlds ecosystems. Human appropriation of net primary production, apart from leaving less for other species to use, alters the composition of the atmosphere, levels of biodiversity, energy flows within food webs and the provision of important ecosystem services. Here we present a global map showing the amount of net primary production required by humans and compare it to the total amount generated on the landscape. We then derive a spatial balance sheet of net primary production ‘supply’ and ‘demand’ for the world. We show that human appropriation of net primary production varies spatially from almost zero to many times the local primary production. These analyses reveal the uneven footprint of human consumption and related environmental impacts, indicate the degree to which human populations depend on net primary production ‘imports’ and suggest policy options for slowing future growth of human appropriation of net primary production.


Ecology Letters | 2011

Stability of pollination services decreases with isolation from natural areas despite honey bee visits

Lucas A. Garibaldi; Ingolf Steffan-Dewenter; Claire Kremen; Juan M. Morales; Riccardo Bommarco; Saul A. Cunningham; Luísa G. Carvalheiro; Natacha P. Chacoff; Jan H. Dudenhöffer; Sarah S. Greenleaf; Andrea Holzschuh; Rufus Isaacs; Kristin M. Krewenka; Yael Mandelik; Margaret M. Mayfield; Lora Morandin; Simon G. Potts; Taylor H. Ricketts; Hajnalka Szentgyörgyi; Blandina Felipe Viana; Catrin Westphal; Rachael Winfree; Alexandra M. Klein

Sustainable agricultural landscapes by definition provide high magnitude and stability of ecosystem services, biodiversity and crop productivity. However, few studies have considered landscape effects on the stability of ecosystem services. We tested whether isolation from florally diverse natural and semi-natural areas reduces the spatial and temporal stability of flower-visitor richness and pollination services in crop fields. We synthesised data from 29 studies with contrasting biomes, crop species and pollinator communities. Stability of flower-visitor richness, visitation rate (all insects except honey bees) and fruit set all decreased with distance from natural areas. At 1 km from adjacent natural areas, spatial stability decreased by 25, 16 and 9% for richness, visitation and fruit set, respectively, while temporal stability decreased by 39% for richness and 13% for visitation. Mean richness, visitation and fruit set also decreased with isolation, by 34, 27 and 16% at 1 km respectively. In contrast, honey bee visitation did not change with isolation and represented > 25% of crop visits in 21 studies. Therefore, wild pollinators are relevant for crop productivity and stability even when honey bees are abundant. Policies to preserve and restore natural areas in agricultural landscapes should enhance levels and reliability of pollination services.


Ecology Letters | 2013

A global quantitative synthesis of local and landscape effects on wild bee pollinators in agroecosystems

Christina M. Kennedy; Eric Lonsdorf; Maile C. Neel; Neal M. Williams; Taylor H. Ricketts; Rachael Winfree; Riccardo Bommarco; Claire Brittain; Alana L. Burley; Daniel P. Cariveau; Luísa G. Carvalheiro; Natacha P. Chacoff; Saul A. Cunningham; Bryan N. Danforth; Jan-Hendrik Dudenhöffer; Elizabeth Elle; Hannah R. Gaines; Lucas A. Garibaldi; Claudio Gratton; Andrea Holzschuh; Rufus Isaacs; Steven K. Javorek; Shalene Jha; Alexandra M. Klein; Kristin M. Krewenka; Yael Mandelik; Margaret M. Mayfield; Lora Morandin; Lisa A. Neame; Mark Otieno

Bees provide essential pollination services that are potentially affected both by local farm management and the surrounding landscape. To better understand these different factors, we modelled the relative effects of landscape composition (nesting and floral resources within foraging distances), landscape configuration (patch shape, interpatch connectivity and habitat aggregation) and farm management (organic vs. conventional and local-scale field diversity), and their interactions, on wild bee abundance and richness for 39 crop systems globally. Bee abundance and richness were higher in diversified and organic fields and in landscapes comprising more high-quality habitats; bee richness on conventional fields with low diversity benefited most from high-quality surrounding land cover. Landscape configuration effects were weak. Bee responses varied slightly by biome. Our synthesis reveals that pollinator persistence will depend on both the maintenance of high-quality habitats around farms and on local management practices that may offset impacts of intensive monoculture agriculture.

Collaboration


Dive into the Taylor H. Ricketts's collaboration.

Top Co-Authors

Avatar

Claire Kremen

University of California

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Robin Naidoo

World Wide Fund for Nature

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Eric Dinerstein

World Wide Fund for Nature

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge