Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Taylor W. Cleworth is active.

Publication


Featured researches published by Taylor W. Cleworth.


Gait & Posture | 2012

Influence of real and virtual heights on standing balance

Taylor W. Cleworth; Brian C. Horslen; Mark G. Carpenter

Fear and anxiety induced by threatening scenarios, such as standing on elevated surfaces, have been shown to influence postural control in young adults. There is also a need to understand how postural threat influences postural control in populations with balance deficits and risk of falls. However, safety and feasibility issues limit opportunities to place such populations in physically threatening scenarios. Virtual reality (VR) has successfully been used to simulate threatening environments, although it is unclear whether the same postural changes can be elicited by changes in virtual and real threat conditions. Therefore, the purpose of this study was to compare the effects of real and virtual heights on changes to standing postural control, electrodermal activity (EDA) and psycho-social state. Seventeen subjects stood at low and high heights in both real and virtual environments matched in scale and visual detail. A repeated measures ANOVA revealed increases with height, independent of visual environment, in EDA, anxiety, fear, and center of pressure (COP) frequency, and decreases with height in perceived stability, balance confidence and COP amplitude. Interaction effects were seen for fear and COP mean position; where real elicited larger changes with height than VR. This study demonstrates the utility of VR, as simulated heights resulted in changes to postural, autonomic and psycho-social measures similar to those seen at real heights. As a result, VR may be a useful tool for studying threat related changes in postural control in populations at risk of falls, and to screen and rehabilitate balance deficits associated with fear and anxiety.


Journal of Neurophysiology | 2016

Vestibulo-spinal and vestibulo-ocular reflexes are modulated when standing with increased postural threat

E.N. Naranjo; Taylor W. Cleworth; J.H.J. Allum; John Timothy Inglis; J. Lea; B.D. Westerberg; Mark G. Carpenter

We investigated how vestibulo-spinal reflexes (VSRs) and vestibulo-ocular reflexes (VORs) measured through vestibular evoked myogenic potentials (VEMPs) and video head impulse test (vHIT) outcomes, respectively, are modulated during standing under conditions of increased postural threat. Twenty-five healthy young adults stood quietly at low (0.8 m from the ground) and high (3.2 m) surface height conditions in two experiments. For the first experiment (n = 25) VEMPs were recorded with surface EMG from inferior oblique (IO), sternocleidomastoid (SCM), trapezius (TRP), and soleus (SOL) muscles in response to 256 air-conducted short tone bursts (125 dB SPL, 500 Hz, 4 ms) delivered via headphones. A subset of subjects (n = 19) also received horizontal and vertical head thrusts (∼150°/s) at each height in a separate session, comparing eye and head velocities by using a vHIT system for calculating the functional VOR gains. VEMP amplitudes (IO, TRP, SOL) and horizontal and vertical vHIT gains all increased with high surface height conditions (P < 0.05). Changes in IO and SCM VEMP amplitudes as well as horizontal vHIT gains were correlated with changes in electrodermal activity (ρ = 0.44-0.59, P < 0.05). VEMP amplitude for the IO also positively correlated with fear (ρ = 0.43, P = 0.03). Threat-induced anxiety, fear, and arousal have significant effects on VSR and VOR gains that can be observed in both physiological and functional outcome measures. These findings provide support for a potential central modulation of the vestibular nucleus complex through excitatory inputs from neural centers involved in processing fear, anxiety, arousal, and vigilance.


Human Movement Science | 2015

Personality traits and individual differences predict threat-induced changes in postural control

Martin Zaback; Taylor W. Cleworth; Mark G. Carpenter; Allan L. Adkin

This study explored whether specific personality traits and individual differences could predict changes in postural control when presented with a height-induced postural threat. Eighty-two healthy young adults completed questionnaires to assess trait anxiety, trait movement reinvestment (conscious motor processing, movement self-consciousness), physical risk-taking, and previous experience with height-related activities. Tests of static (quiet standing) and anticipatory (rise to toes) postural control were completed under low and high postural threat conditions. Personality traits and individual differences significantly predicted height-induced changes in static, but not anticipatory postural control. Individuals less prone to taking physical risks were more likely to lean further away from the platform edge and sway at higher frequencies and smaller amplitudes. Individuals more prone to conscious motor processing were more likely to lean further away from the platform edge and sway at larger amplitudes. Individuals more self-conscious about their movement appearance were more likely to sway at smaller amplitudes. Evidence is also provided that relationships between physical risk-taking and changes in static postural control are mediated through changes in fear of falling and physiological arousal. Results from this study may have indirect implications for balance assessment and treatment; however, further work exploring these factors in patient populations is necessary.


Gait & Posture | 2016

Influence of virtual height exposure on postural reactions to support surface translations

Taylor W. Cleworth; Romeo Chua; J. Timothy Inglis; Mark G. Carpenter

As fear of falling is related to the increased likelihood of falls, it is important to understand the effects of threat-related factors (fear, anxiety and confidence) on dynamic postural reactions. Previous studies designed to examine threat effects on dynamic postural reactions have methodological limitations and lack a comprehensive analysis of simultaneous kinetic, kinematic and electromyographical recordings. The current study addressed these limitations by examining postural reactions of 26 healthy young adults to unpredictable anterior-posterior support-surface translations (acceleration=0.6m/s(2), constant velocity=0.25m/s, total displacement=0.75m) while standing on a narrow virtual surface at Low (0.4cm) and High (3.2m) virtual heights. Standing at virtual height increased fear and anxiety, and decreased confidence. Prior to perturbations, threat led to increased tonic muscle activity in tibialis anterior, resulting in a higher co-contraction index between lower leg muscles. For backward perturbations, muscle activity in the lower leg and arm, and center of pressure peak displacements, were earlier and larger when standing at virtual height. In addition, arm flexion significantly increased while leg, trunk and center of mass displacements remained unchanged across heights. When controlling for leaning, threat-related factors can influence the neuro-mechanical responses to an unpredictable perturbation, causing specific characteristics of postural reactions to be facilitated in young adults when their balance is threatened.


Journal of Vestibular Research | 2017

Differences in head impulse test results due to analysis techniques

Taylor W. Cleworth; Mark G. Carpenter; Flurin Honegger; J.H.J. Allum

BACKGROUND Different analysis techniques are used to define vestibulo-ocular reflex (VOR) gain between eye and head angular velocity during the video head impulse test (vHIT). Comparisons would aid selection of gain techniques best related to head impulse characteristics and promote standardisation. OBJECTIVE Compare and contrast known methods of calculating vHIT VOR gain. METHODS We examined lateral canal vHIT responses recorded from 20 patients twice within 13 weeks of acute unilateral peripheral vestibular deficit onset. Ten patients were tested with an ICS Impulse system (GN Otometrics) and 10 with an EyeSeeCam (ESC) system (Interacoustics). Mean gain and variance were computed with area, average sample gain, and regression techniques over specific head angular velocity (HV) and acceleration (HA) intervals. RESULTS Results for the same gain technique were not different between measurement systems. Area and average sample gain yielded equally lower variances than regression techniques. Gains computed over the whole impulse duration were larger than those computed for increasing HV. Gain over decreasing HV was associated with larger variances. Gains computed around peak HV were smaller than those computed around peak HA. The median gain over 50-70 ms was not different from gain around peak HV. However, depending on technique used, the gain over increasing HV was different from gain around peak HA. Conversion equations between gains obtained with standard ICS and ESC methods were computed. For low gains, the conversion was dominated by a constant that needed to be added to ESC gains to equal ICS gains. CONCLUSIONS We recommend manufacturers standardize vHIT gain calculations using 2 techniques: area gain around peak HA and peak HV.


Neuroscience Letters | 2016

Postural threat influences conscious perception of postural sway.

Taylor W. Cleworth; Mark G. Carpenter

This study examined how changes in threat influenced conscious perceptions of postural sway. Young healthy adults stood on a forceplate mounted to a hydraulic lift placed at two heights (0.8m and 3.2m). At each height, subjects stood quietly with eyes open and eyes closed for 60s. Subjects were instructed to either stand normal, or stand normal and track their perceived sway in the antero-posterior plane by rotating a hand-held potentiometer. Participants reported an increased level of fear, anxiety, arousal and a decreased level of balance confidence when standing at height. In addition, postural sway amplitude decreased and frequency increased at height. However, there were no effects of height on perceived sway. When standing under conditions of increased postural threat, sway amplitude is reduced, while sway perception appears to remain unchanged. Therefore, when threat is increased, sensory gain may be increased to compensate for postural strategies that reduce sway (i.e. stiffening strategy), thereby ensuring sufficient afferent information is available to maintain, or even increase the conscious perception of postural sway.


Otology & Neurotology | 2016

Recovery of Vestibulo-Ocular Reflex Symmetry After an Acute Unilateral Peripheral Vestibular Deficit: Time Course and Correlation With Canal Paresis.

John H. J. Allum; Taylor W. Cleworth; Flurin Honegger

Background: We investigated how response asymmetries and deficit side response amplitudes for head accelerations used clinically to test the vestibular ocular reflex (VOR) are correlated with caloric canal paresis (CP) values. Methods: 30 patients were examined at onset of an acute unilateral peripheral vestibular deficit (aUPVD) and 3, 6, and 13 weeks later with three different VOR tests: caloric, rotating chair (ROT), and video head impulse tests (vHIT). Response changes over time were fitted with an exponential decay model and compared with using linear regression analysis. Results: Recovery times (to within 10% of steady state) were similar for vHIT-asymmetry and CP (>10 weeks) but shorter for ROT asymmetry (<4 weeks). Regressions with CP were similar (vHIT asymmetry, R = 0.68, ROT, R = 0.62). Responses to the deficit side were also equally well correlated with CP values (R = 0.71). Specificity for vHIT and 20 degrees/s2 ROT deficit side responses was 100% in comparison to CP values, sensitivity was 74% for vHIT, 75% for ROT. A decrease in normal side responses occurred for ROT but not for vHIT at 3 weeks. Normal side responses were weekly correlated with CP for ROT (R = 0.49) but not for vHIT (R = 0.17). Conclusions: These results indicate that vHIT deficit side VOR gains are slightly better correlated with CP values than ROT, probably because of similar recovery time courses of vHIT and caloric responses and the lack of normal side vHIT changes. However, specificity and sensitivity is the same for vHIT and ROT tests.


Neuroscience | 2017

Threat effects on human oculo-motor function

E.N. Naranjo; Taylor W. Cleworth; J.H.J. Allum; John Timothy Inglis; J. Lea; B.D. Westerberg; Mark G. Carpenter

Neuro-anatomical evidence supports the potential for threat-related factors, such as fear, anxiety and vigilance, to influence brainstem motor nuclei controlling eye movements, as well as the vestibular nuclei. However, little is known about how threat influences human ocular responses, such as eye saccades (ES), smooth pursuit eye tracking (SP), and optokinetic nystagmus (OKN), and whether these responses can be facilitated above normal baseline levels with a natural source of threat. This study was designed to examine the effects of height-induced postural threat on the gain of ES, SP and OKN responses in humans. Twenty participants stood at two different surface heights while performing ES (ranging from 8° to 45° from center), SP (15, 20, 30°/s) and OKN (15, 30, 60°/s) responses in the horizontal plane. Height did not significantly increase the slope of the relationship between ES peak velocity and initial amplitude, or the gain of ES amplitude. In contrast height significantly increased SP and OKN gain. Significant correlations were found between changes in physiological arousal and OKN gain. Observations of changes with height in OKN and SP support neuro-anatomical evidence of threat-related mechanisms influencing both oculo-motor nuclei and vestibular reflex pathways. Although further study is warranted, the findings suggest that potential influences of fear, anxiety and arousal/alertness should be accounted for, or controlled, during clinical vestibular and oculo-motor testing.


Neuroscience Letters | 2018

Influence of emotional stimuli on lower limb cutaneous reflexes during human gait

Martin Zaback; Brian C. Horslen; Taylor W. Cleworth; Laurel J. Collings; Cécile Langlet; J. Timothy Inglis; Mark G. Carpenter

Previous research has shown that cutaneous reflexes are modulated when walking with a threat to stability. It is unclear if this reflex modulation is purely related to the context of the imposed threat or if emotional changes associated with the threat exert an independent influence on reflex excitability. This study investigated the influence of emotional stimuli on lower limb cutaneous reflexes during treadmill walking. Twenty-eight healthy young adults walked at a self-selected pace while viewing pictures that manipulated emotional arousal and valence (confirmed with electrodermal and self-report measures). Throughout each trial, cutaneous reflexes were evoked by electrically stimulating the sural nerve at heel contact, mid-stance, or toe off. Surface electromyography of the ipsilateral soleus (SOL), medial gastrocnemius (MG), tibialis anterior (TA), biceps femoris (BF), and vastus lateralis (VL) was recorded to assess reflexes. Highly arousing pictures, independent of valence, significantly facilitated TA, and trended toward facilitating SOL and BF reflexes during mid-stance. Unpleasant pictures, independent of arousal, significantly reduced reflex amplitudes in BF during mid-stance and TA during toe off. While changes in background muscle activity and step cadence were observed, they did not correlate with reflex changes. This study provides the first evidence that emotional stimuli exert an independent influence on cutaneous reflex excitability during gait. As cutaneous reflexes contribute to stability during gait, these findings support the notion that emotional state influences important sensorimotor processes underlying balance control.


Gait & Posture | 2018

Postural threat influences the conscious perception of body position during voluntary leaning

Taylor W. Cleworth; J. Timothy Inglis; Mark G. Carpenter

BACKGROUND Height-related changes in postural control can alter feedback used to control balance, which may lead to a mismatch in perceived and actual sway changes during quiet stance. However, there is still a need to examine how these changes affect the ability to detect limits of stability (and movements related to base of support limits). RESEARCH QUESTION The aim of this study was to examine how changes in height-related threat influence conscious perceptions of body position during voluntary balance tasks. METHODS Twenty young healthy adults, fitted with kinematic markers on the right side of the body, stood on a forceplate mounted to a hydraulic lift placed at two heights (0.8 m and 3.2 m). At height (completed first), participants leaned as far forward as possible, at the ankle joint, while trying to remain as an inverted pendulum. Then, at each height, participants stood with eyes open, and voluntarily leaned to one of ten targets (10%-100% maximum lean) displayed visually as angular displacement of body segments on a screen. Once on target, participants reported a perceived position relative to their maximum lean. Balance confidence, fear and anxiety, and physiological arousal (hand electrodermal activity, EDA) were recorded and statistically tested using paired sample t-tests. Actual and perceived body positions were tested using repeated measures ANOVAs (height x target). RESULTS Height significantly increased EDA, fear and anxiety, and decreased balance confidence. Participants voluntarily leaned to all target positions equally across heights. However, at any given target position, the perceived lean changed with height. When participants are asked to lean to a target in at height, their amount of perceived lean was larger by 4.9%, on average (range: 1.8%-9.7%). SIGNIFICANCE This modulation in perceived limits of stability may increase the risk of falls in those who have an increased fear of falling.

Collaboration


Dive into the Taylor W. Cleworth's collaboration.

Top Co-Authors

Avatar

Mark G. Carpenter

University of British Columbia

View shared research outputs
Top Co-Authors

Avatar

J. Timothy Inglis

University of British Columbia

View shared research outputs
Top Co-Authors

Avatar

Brian C. Horslen

University of British Columbia

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

E.N. Naranjo

University of British Columbia

View shared research outputs
Top Co-Authors

Avatar

J. Lea

St. Paul's Hospital

View shared research outputs
Top Co-Authors

Avatar

J.H.J. Allum

University Hospital of Basel

View shared research outputs
Top Co-Authors

Avatar

John Timothy Inglis

University of British Columbia

View shared research outputs
Top Co-Authors

Avatar

Martin Zaback

University of British Columbia

View shared research outputs
Researchain Logo
Decentralizing Knowledge