Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Tea Meulia is active.

Publication


Featured researches published by Tea Meulia.


Current Protocols Essential Laboratory Techniques | 2008

Real‐Time PCR

Dean Fraga; Tea Meulia; Steven D. Fenster

Real‐time PCR is a recent modification to the polymerase chain reaction that allows precise quantification of specific nucleic acids in a complex mixture by fluorescent detection of labeled PCR products. Detection can be accomplished using specific, as well as nonspecific fluorescent probes. Real‐time PCR is often used in the quantification of gene expression levels. Prior to using real‐time PCR to quantify a target message, care must be taken to optimize the RNA isolation, primer design, and PCR reaction conditions so that accurate and reliable measurements can be made. This short overview of real‐time PCR discusses basic principles behind real‐time PCR, some optimization and experimental design considerations, and how to quantify the data generated using both relative and absolute quantification approaches. Useful Web sites and texts that expand upon topics discussed are also listed.


Journal of Virology | 2006

Pathogenesis of a Genogroup II Human Norovirus in Gnotobiotic Pigs

Sonia Cheetham; Menira Souza; Tea Meulia; Sheila Grimes; Myung Guk Han; Linda J. Saif

ABSTRACT We evaluated the gnotobiotic (Gn) pig as a model to study the pathogenesis of human norovirus (HuNoV) and to determine the target cells for viral replication. Sixty-five Gn pigs were inoculated with fecal filtrates of the NoV/GII/4/HS66/2001/US strain or with pig-passaged intestinal contents (IC) and euthanized acutely (n = 43) or after convalescence (n = 22). Age-matched Gn piglets (n = 14) served as mock-inoculated controls. Seventy-four percent (48/65) of the inoculated animals developed mild diarrhea compared to 0 of 14 controls. Pigs from postinoculation days (PID) 1 to 4 tested positive for HuNoV by reverse transcription-PCR of rectal swab fluids (29/65) and IC (9/43) and by antigen (Ag) enzyme-linked immunosorbent assay (ELISA) using antiserum to virus-like particles of HuNoV GII/4. No control pigs were positive. Histopathologic examination showed mild lesions in the proximal small intestine of only one pig (1/7). Seroconversion after PID 21 was detected by antibody ELISA in 13 of 22 virus-inoculated pigs (titers, 1:20 to 1:200) but not in controls. Immunofluorescent microscopy using a monoclonal antibody to HuNoV GII capsid revealed patchy infection of duodenal and jejunal enterocytes of 18 of 31 HuNoV-inoculated pigs with a few stained cells in the ileum and no immunofluorescence (IF) in mock-inoculated controls. Immunofluorescent detection of the viral nonstructural N-terminal protein antigen in enterocytes confirmed translation. Transmission electron microscopy of intestines from HuNoV-inoculated pigs showed disrupted enterocytes, with cytoplasmic membrane vesicles containing calicivirus-like particles of 25 to 40 nm in diameter. In summary, serial passage of HuNoV in pigs, with occurrence of mild diarrhea and shedding, and immunofluorescent detection of the HuNoV structural and nonstructural proteins in enterocytes confirm HuNoV replication in Gn pigs.


Journal of Cellular Biochemistry | 2003

A proteomic study of the arabidopsis nuclear matrix

Tomasz T. Calikowski; Tea Meulia; Iris Meier

The eukaryotic nucleus has been proposed to be organized by two interdependent nucleoprotein structures, the DNA‐based chromatin and the RNA‐dependent nuclear matrix. The functional composition and molecular organization of the second component have not yet been resolved. Here, we describe the isolation of the nuclear matrix from the model plant Arabidopsis, its initial characterization by confocal and electron microscopy, and the identification of 36 proteins by mass spectrometry. Electron microscopy of resinless samples confirmed a structure very similar to that described for the animal nuclear matrix. Two‐dimensional gel electrophoresis resolved approximately 300 protein spots. Proteins were identified in batches by ESI tandem mass spectrometry after resolution by 1D SDS–PAGE. Among the identified proteins were a number of demonstrated or predicted Arabidopsis homologs of nucleolar proteins such as IMP4, Nop56, Nop58, fibrillarins, nucleolin, as well as ribosomal components and a putative histone deacetylase. Others included homologs of eEF‐1, HSP/HSC70, and DnaJ, which have also been identified in the nucleolus or nuclear matrix of human cells, as well as a number of novel proteins with unknown function. This study is the first proteomic approach towards the characterization of a higher plant nuclear matrix. It demonstrates the striking similarities both in structure and protein composition of the operationally defined nuclear matrix across kingdoms whose unicellular ancestors have separated more than one billion years ago. J. Cell. Biochem. 90: 361–378, 2003.


Current Biology | 2007

Anchorage of Plant RanGAP to the Nuclear Envelope Involves Novel Nuclear-Pore-Associated Proteins

Xianfeng Morgan Xu; Tea Meulia; Iris Meier

The Ran GTPase controls multiple cellular processes including nucleocytoplasmic transport, spindle assembly, and nuclear envelope (NE) formation [1-4]. Its roles are accomplished by the asymmetric distribution of RanGTP and RanGDP enabled by the specific locations of the Ran GTPase-activating protein RanGAP and the nucleotide exchange factor RCC1 [5-8]. Mammalian RanGAP1 targeting to the NE and kinetochores requires interaction of its sumoylated C-terminal domain with the nucleoporin Nup358/RanBP2 [9-14]. In contrast, Arabidopsis RanGAP1 is associated with the NE and cell plate, mediated by an N-terminal, plant-specific WPP domain [15-18]. In the absence of RanBP2 in plants, the mechanism for spatially sequestering plant RanGAP is unknown. Here, Arabidopsis WPP-domain interacting proteins (WIPs) that interact with RanGAP1 in vivo and colocalize with RanGAP1 at the NE and cell plate were identified. Immunogold labeling indicates that WIP1 is associated with the outer NE. In a wip1-1/wip2-1/wip3-1 triple mutant, RanGAP1 is dislocated from the NE in undifferentiated root-tip cells, whereas NE targeting in differentiated root cells and targeting to the cell plate remain intact. We propose that WIPs are novel plant nucleoporins involved in RanGAP1 NE anchoring in specific cell types. Our data support a separate evolution of RanGAP targeting mechanisms in different kingdoms.


Veterinary Microbiology | 2014

Cell culture isolation and sequence analysis of genetically diverse US porcine epidemic diarrhea virus strains including a novel strain with a large deletion in the spike gene

Tomoichiro Oka; Linda J. Saif; Douglas Marthaler; Malak A. Esseili; Tea Meulia; Chun Ming Lin; Anastasia N. Vlasova; Kwonil Jung; Yan Zhang; Qiuhong Wang

n Abstractn n The highly contagious and deadly porcine epidemic diarrhea virus (PEDV) first appeared in the US in April 2013. Since then the virus has spread rapidly nationwide and to Canada and Mexico causing high mortality among nursing piglets and significant economic losses. Currently there are no efficacious preventive measures or therapeutic tools to control PEDV in the US. The isolation of PEDV in cell culture is the first step toward the development of an attenuated vaccine, to study the biology of PEDV and to develop in vitro PEDV immunoassays, inactivation assays and screen for PEDV antivirals. In this study, nine of 88 US PEDV strains were isolated successfully on Vero cells with supplemental trypsin and subjected to genomic sequence analysis. They differed genetically mainly in the N-terminal S protein region as follows: (1) strains (nn =7) similar to the highly virulent US PEDV strains; (2) one similar to the reportedly US S INDEL PEDV strain; and (3) one novel strain most closely related to highly virulent US PEDV strains, but with a large (197aa) deletion in the S protein. Representative strains of these three genetic groups were passaged serially and grew to titers of ∼5–6log10 plaque forming units/mL. To our knowledge, this is the first report of the isolation in cell culture of an S INDEL PEDV strain and a PEDV strain with a large (197aa) deletion in the S protein. We also designed primer sets to detect these genetically diverse US PEDV strains.n n


BMC Genomics | 2012

RNA-Seq and molecular docking reveal multi-level pesticide resistance in the bed bug

Praveen Mamidala; Asela Wijeratne; Saranga Wijeratne; Karl Kornacker; Babu Sudhamalla; Loren Rivera-Vega; Andrew Hoelmer; Tea Meulia; Susan C. Jones; Omprakash Mittapalli

BackgroundBed bugs (Cimex lectularius) are hematophagous nocturnal parasites of humans that have attained high impact status due to their worldwide resurgence. The sudden and rampant resurgence of C. lectularius has been attributed to numerous factors including frequent international travel, narrower pest management practices, and insecticide resistance.ResultsWe performed a next-generation RNA sequencing (RNA-Seq) experiment to find differentially expressed genes between pesticide-resistant (PR) and pesticide-susceptible (PS) strains of C. lectularius. A reference transcriptome database of 51,492 expressed sequence tags (ESTs) was created by combining the databases derived from de novo assembled mRNA-Seq tags (30,404 ESTs) and our previous 454 pyrosequenced database (21,088 ESTs). The two-way GLMseq analysis revealed ~15,000 highly significant differentially expressed ESTs between the PR and PS strains. Among the top 5,000 differentially expressed ESTs, 109 putative defense genes (cuticular proteins, cytochrome P450s, antioxidant genes, ABC transporters, glutathione S-transferases, carboxylesterases and acetyl cholinesterase) involved in penetration resistance and metabolic resistance were identified. Tissue and development-specific expression of P450 CYP3 clan members showed high mRNA levels in the cuticle, Malpighian tubules, and midgut; and in early instar nymphs, respectively. Lastly, molecular modeling and docking of a candidate cytochrome P450 (CYP397A1V2) revealed the flexibility of the deduced protein to metabolize a broad range of insecticide substrates including DDT, deltamethrin, permethrin, and imidacloprid.ConclusionsWe developed significant molecular resources for C. lectularius putatively involved in metabolic resistance as well as those participating in other modes of insecticide resistance. RNA-Seq profiles of PR strains combined with tissue-specific profiles and molecular docking revealed multi-level insecticide resistance in C. lectularius. Future research that is targeted towards RNA interference (RNAi) on the identified metabolic targets such as cytochrome P450s and cuticular proteins could lay the foundation for a better understanding of the genetic basis of insecticide resistance in C. lectularius.


Journal of Virology | 2007

Binding Patterns of Human Norovirus-Like Particles to Buccal and Intestinal Tissues of Gnotobiotic Pigs in Relation to A/H Histo-Blood Group Antigen Expression

Sonia Cheetham; Menira Souza; R. McGregor; Tea Meulia; Qiuhong Wang; Linda J. Saif

ABSTRACT Histo-blood group antigen (HBGA) phenotypes have been associated with susceptibility to human noroviruses (HuNoVs). Our aims were: (i) to determine the patterns of A/H HBGA expression in buccal and intestinal tissues of gnotobiotic (Gn) pigs; (ii) to determine if virus-like particles (VLPs) of HuNoV genogroup I (GI) and GII bind to A- or H-type tissues; (iii) to compare A/H expression and VLP binding patterns and confirm their binding specificities by blocking assays; (iv) to develop a hemagglutination inhibition test using buccal cells from live pigs to determine the Gn pigs A/H phenotype and to match viral strains with previously determined HuNoV VLP binding specificities; and (v) to determine the A/H phenotypes and compare these data to the infection outcomes of a previous study of 65 Gn pigs inoculated with HuNoV GII/4 strain HS66 and expressing A and/or H or neither antigen on their buccal and intestinal tissues (S. Cheetham, M. Souza, T. Meulia, S. Grimes, M. G. Han, and L. J. Saif, J. Virol. 80:10372-10381, 2006). We found that the HuNoV GI/GII VLPs of different clusters bound to tissues from four pigs tested (two A+ and two H+). The GI/1 and GII/4 VLPs bound extensively to duodenal and buccal tissues from either A+ or H+ pigs, but surprisingly, GII/1 and GII/3 VLPs bound minimally to the duodenum of an A+ pig. The VLP binding was partially inhibited by A-, H1-, or H2-specific monoclonal antibodies, but was completely blocked by porcine mucin. Comparing the A/H phenotypes of 65 HS66-inoculated Gn pigs from our previous study, we found that significantly more A+ and H+ pigs (51%) than non-A+ and non-H+ pigs (12.5%) shed virus. From the 22 convalescent pigs, significantly more A+ or H+ pigs (66%) than non-A+ or H+ pigs (25%) seroconverted.


The Plant Cell | 2004

Arabidopsis WPP-Domain Proteins Are Developmentally Associated with the Nuclear Envelope and Promote Cell Division

Shalaka Patel; Annkatrin Rose; Tea Meulia; Ram Dixit; Richard J. Cyr; Iris Meier

The nuclear envelope (NE) acts as a selective barrier to macromolecule trafficking between the nucleus and the cytoplasm and undergoes a complex reorganization during mitosis. Different eukaryotic kingdoms show specializations in NE function and composition. In contrast with vertebrates, the protein composition of the NE and the function of NE proteins are barely understood in plants. MFP1 attachment factor 1 (MAF1) is a plant-specific NE-associated protein first identified in tomato (Lycopersicon esculentum). Here, we demonstrate that two Arabidopsis thaliana MAF1 homologs, WPP1 and WPP2, are associated with the NE specifically in undifferentiated cells of the root tip. Reentry into cell cycle after callus induction from differentiated root segments reprograms their NE association. Based on green fluorescent protein fusions and immunogold labeling data, the proteins are associated with the outer NE and the nuclear pores in interphase cells and with the immature cell plate during cytokinesis. RNA interference–based suppression of the Arabidopsis WPP family causes shorter primary roots, a reduced number of lateral roots, and reduced mitotic activity of the root meristem. Together, these data demonstrate the existence of regulated NE targeting in plants and identify a class of plant-specific NE proteins involved in mitotic activity.


Plant Physiology | 2011

SUN Regulates Vegetative and Reproductive Organ Shape by Changing Cell Division Patterns

Shan Wu; Han Xiao; Antonio Cabrera; Tea Meulia; Esther van der Knaap

One of the major genes controlling the elongated fruit shape of tomato (Solanum lycopersicum) is SUN. In this study, we explored the roles of SUN in vegetative and reproductive development using near isogenic lines (NILs) that differ at the sun locus, and SUN overexpressors in both the wild species LA1589 (Solanum pimpinellifolium) and the cultivar Sun1642 background. Our results demonstrate that SUN controls tomato shape through redistribution of mass that is mediated by increased cell division in the longitudinal and decreased cell division in the transverse direction of the fruit. The expression of SUN is positively correlated with slender phenotypes in cotyledon, leaflet, and floral organs, an elongated ovary, and negatively correlated with seed weight. Overexpression of SUN leads to more extreme phenotypes than those shown in the NILs and include thinner leaf rachises and stems, twisted leaf rachises, increased serrations of the leaflets, and dramatically increased elongation at the proximal end of the ovary and fruit. In situ hybridizations of the NILs showed that SUN is expressed throughout the ovary and young fruit, particularly in the vascular tissues and placenta surface, and in the ovules and developing seed. The phenotypic effects resulting from high expression of SUN suggest that the gene is involved in several plant developmental processes.


BMC Plant Biology | 2009

Integration of tomato reproductive developmental landmarks and expression profiles, and the effect of SUN on fruit shape

Han Xiao; Cheryll Radovich; Nicholas Welty; Jason C. Hsu; Dongmei Li; Tea Meulia; Esther van der Knaap

BackgroundUniversally accepted landmark stages are necessary to highlight key events in plant reproductive development and to facilitate comparisons among species. Domestication and selection of tomato resulted in many varieties that differ in fruit shape and size. This diversity is useful to unravel underlying molecular and developmental mechanisms that control organ morphology and patterning. The tomato fruit shape gene SUN controls fruit elongation. The most dramatic effect of SUN on fruit shape occurs after pollination and fertilization although a detailed investigation into the timing of the fruit shape change as well as gene expression profiles during critical developmental stages has not been conducted.ResultsWe provide a description of floral and fruit development in a red-fruited closely related wild relative of tomato, Solanum pimpinellifolium accession LA1589. We use established and propose new floral and fruit landmarks to present a framework for tomato developmental studies. In addition, gene expression profiles of three key stages in floral and fruit development are presented, namely floral buds 10 days before anthesis (floral landmark 7), anthesis-stage flowers (floral landmark 10 and fruit landmark 1), and 5 days post anthesis fruit (fruit landmark 3). To demonstrate the utility of the landmarks, we characterize the tomato shape gene SUN in fruit development. SUN controls fruit shape predominantly after fertilization and its effect reaches a maximum at 8 days post-anthesis coinciding with fruit landmark 4 representing the globular embryo stage of seed development. The expression profiles of the NILs that differ at sun show that only 34 genes were differentially expressed and most of them at a less than 2-fold difference.ConclusionThe landmarks for flower and fruit development in tomato were outlined and integrated with the effect of SUN on fruit shape. Although we did not identify many genes differentially expressed in the NILs that differ at the sun locus, higher or lower transcript levels for many genes involved in phytohormone biosynthesis or signaling as well as organ identity and patterning of tomato fruit were found between developmental time points.

Collaboration


Dive into the Tea Meulia's collaboration.

Top Co-Authors

Avatar

Linda J. Saif

Ohio Agricultural Research and Development Center

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Qiuhong Wang

Ohio Agricultural Research and Development Center

View shared research outputs
Top Co-Authors

Avatar

Asela Wijeratne

Ohio Agricultural Research and Development Center

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Feng Qu

Ohio State University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Saranga Wijeratne

Ohio Agricultural Research and Development Center

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge