Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Ted Bambakidis is active.

Publication


Featured researches published by Ted Bambakidis.


Journal of Trauma-injury Infection and Critical Care | 2015

Addition of low-dose valproic acid to saline resuscitation provides neuroprotection and improves long-term outcomes in a large animal model of combined traumatic brain injury and hemorrhagic shock.

Ihab Halaweish; Ted Bambakidis; Zhigang Chang; He Wei; Baoling Liu; Yongqing Li; Toby Bonthrone; Ashok Srinivasan; Tess Bonham; Kiril Chtraklin; Hasan B. Alam

BACKGROUND Combined traumatic brain injury (TBI) and hemorrhagic shock (HS) is highly lethal. In a nonsurvival model of TBI + HS, addition of high-dose valproic acid (VPA) (300 mg/kg) to hetastarch reduced brain lesion size and associated swelling 6 hours after injury; whether this would have translated into better neurologic outcomes remains unknown. It is also unclear whether lower doses of VPA would be neuroprotective. We hypothesized that addition of low-dose VPA to normal saline (NS) resuscitation would result in improved long-term neurologic recovery and decreased brain lesion size. METHODS TBI was created in anesthetized swine (40–43 kg) by controlled cortical impact, and volume-controlled hemorrhage (40% volume) was induced concurrently. After 2 hours of shock, animals were randomized (n = 5 per group) to NS (3× shed blood) or NS + VPA (150 mg/kg). Six hours after resuscitation, packed red blood cells were transfused, and animals were recovered. Peripheral blood mononuclear cells were analyzed for acetylated histone-H3 at lysine-9. A Neurological Severity Score (NSS) was assessed daily for 30 days. Brain magnetic resonance imaging was performed on Days 3 and 10. Cognitive performance was assessed by training animals to retrieve food from color-coded boxes. RESULTS There was a significant increase in histone acetylation in the NS + VPA–treated animals compared with NS treatment. The NS + VPA group demonstrated significantly decreased neurologic impairment and faster speed of recovery as well as smaller brain lesion size compared with the NS group. Although the final cognitive function scores were similar between the groups, the VPA-treated animals reached the goal significantly faster than the NS controls. CONCLUSION In this long-term survival model of TBI + HS, addition of low-dose VPA to saline resuscitation resulted in attenuated neurologic impairment, faster neurologic recovery, smaller brain lesion size, and a quicker normalization of cognitive functions.


Journal of Trauma-injury Infection and Critical Care | 2014

Effect of pharmacologic resuscitation on the brain gene expression profiles in a swine model of traumatic brain injury and hemorrhage.

Simone E. Dekker; Ted Bambakidis; Martin Sillesen; Baoling Liu; Craig N. Johnson; Guang Jin; Yongqing Li; Hasan B. Alam

BACKGROUND We have previously shown that addition of valproic acid (VPA; a histone deacetylase inhibitor) to hetastarch (Hextend [HEX]) resuscitation significantly decreases lesion size in a swine model of traumatic brain injury (TBI) and hemorrhagic shock (HS). However, the precise mechanisms have not been well defined. As VPA is a transcriptional modulator, the aim of this study was to investigate its effect on brain gene expression profiles. METHODS Swine were subjected to controlled TBI and HS (40% blood volume), kept in shock for 2 hours, and resuscitated with HEX or HEX + VPA (n = 5 per group). Following 6 hours of observation, brain RNA was isolated, and gene expression profiles were measured using a Porcine Gene ST 1.1 microarray (Affymetrix, Santa Clara, CA). Pathway analysis was done using network analysis tools Gene Ontology, Ingenuity Pathway Analysis, and Parametric Gene Set Enrichment Analysis. Real-time polymerase chain reaction was used to verify the key microarray findings. RESULTS A total of 1,668 probe sets mapping to 370 known genes were differentially expressed between the HEX and HEX + VPA groups. Expression of apoptotic genes differed between groups, and biologic function analysis predicted a significant downregulation of apoptosis (p = 1.29 × 10−12), cell death (p = 8.46 × 10−12), and necrosis (p = 9.07 × 10−11). Pathway analysis indicated a significant modulation of pathways involved in cell signaling, dendritic cell response, and the complement system. CONCLUSION This is the first high-throughput analysis of cerebral gene profiling following TBI + HS. It shows that treatment with VPA significantly alters early transcription of pathways related to cell survival, which may explain its neuroprotective effects.


Journal of The American College of Surgeons | 2015

Early Resuscitation with Fresh Frozen Plasma for Traumatic Brain Injury Combined with Hemorrhagic Shock Improves Neurologic Recovery

Ihab Halaweish; Ted Bambakidis; Wei He; Durk Linzel; Zhigang Chang; Ashok Srinivasan; Simone E. Dekker; Baoling Liu; Yongqing Li; Hasan B. Alam

BACKGROUND We have shown that early administration of fresh frozen plasma (FFP) reduces the size of brain lesions 6 hours after injury in a large animal model of traumatic brain injury (TBI) and hemorrhagic shock (HS). To examine long-term outcomes, we hypothesized that early treatment with FFP would result in faster neurologic recovery and better long-term outcomes in a combined TBI and HS model. STUDY DESIGN Anesthetized Yorkshire swine underwent combined TBI and volume-controlled hemorrhage (40% blood volume). After 2 hours of shock, animals were randomized (n = 5/group) to normal saline (3× shed blood) or FFP (1× shed blood) treatment. A neurologic severity score was assessed for 30 days. Magnetic resonance imaging of the brain was performed at days 3, 10, and 24. Cognitive function was tested by training animals to retrieve food from color-coded boxes. RESULTS Neurologic impairment was lower and speed of recovery was considerably faster in the FFP-treated animals. There was a trend toward a smaller lesion size in FFP-treated animal at days 3 and 10, but this did not reach statistical significance. Both groups reached baseline performance on the cognitive testing; however, FFP-treated animals were able to participate, on average, 8 days earlier due to quicker recovery. CONCLUSIONS This is the first study to demonstrate the beneficial effects of FFP treatment in a long-term survival model of combined TBI and HS. Our data show that early treatment with FFP substantially attenuates the degree of neurologic impairment, improves the rate of recovery, and preserves the cognitive functions.


Journal of Surgical Research | 2014

Treatment with a histone deacetylase inhibitor, valproic acid, is associated with increased platelet activation in a large animal model of traumatic brain injury and hemorrhagic shock.

Simone E. Dekker; Martin Sillesen; Ted Bambakidis; Anuska V. Andjelkovic; Guang Jin; Baoling Liu; Christa Boer; Pär I. Johansson; Durk Linzel; Ihab Halaweish; Hasan B. Alam

BACKGROUND We have previously shown that resuscitation with fresh frozen plasma (FFP) in a large animal model of traumatic brain injury (TBI) and hemorrhagic shock (HS) decreases the size of the brain lesion, and that addition of a histone deacetylase inhibitor, valproic acid (VPA), provides synergistic benefits. In this study, we hypothesized that VPA administration would be associated with a conservation of platelet function as measured by increased platelet activation after resuscitation. MATERIALS AND METHODS Ten swine (42-50 kg) were subjected to TBI and HS (40% blood loss). Animals were left in shock for 2 h before resuscitation with either FFP or FFP+VPA (300 mg/kg). Serum levels of platelet activation markers transforming growth factor beta, CD40 L, P-selectin, and platelet endothelial cell adhesion molecule (PECAM) 1 were measured at baseline, postresuscitation, and after a 6-h observation period. Platelet activation markers were also measured in the brain whole cell lysates and immunohistochemistry. RESULTS Circulating P-selectin levels were significantly higher in the FFP+VPA group compared with the FFP alone group (70.85±4.70 versus 48.44±7.28 ng/mL; P<0.01). Likewise, immunohistochemistry data showed elevated P-selectin in the VPA treatment group (22.30±10.39% versus 8.125±3.94%, P<0.01). Serum sCD40L levels were also higher in the FFP+VPA group (3.21±0.124 versus 2.38±0.124 ng/mL; P<0.01), as was brain sCD40L levels (1.41±0.15 versus 1.22±0.12 ng/mL; P=0.05). Circulating transforming growth factor beta levels were elevated in the FFP+VPA group, but this did not reach statistical significance (11.20±1.46 versus 8.09±1.41 ng/mL; P=0.17). Brain platelet endothelial cell adhesion molecule 1 levels were significantly lower in the FFP+VPA group compared with the FFP group (5.22±2.00 pg/mL versus 7.99±1.13 pg/mL; P=0.03). CONCLUSIONS In this clinically relevant large animal model of combined TBI+HS, the addition of VPA to FFP resuscitation results in an early upregulation of platelet activation in the circulation and the brain. The previously observed neuroprotective effects of VPA may be due to a conservation of platelet function as measured by a higher platelet activation response after resuscitation.


Journal of Neurotrauma | 2016

Resuscitation with Valproic Acid Alters Inflammatory Genes in a Porcine Model of Combined Traumatic Brain Injury and Hemorrhagic Shock

Ted Bambakidis; Simone E. Dekker; Martin Sillesen; Baoling Liu; Craig N. Johnson; Guang Jin; Helga E. de Vries; Yongqing Li; Hasan B. Alam

Traumatic brain injury and hemorrhagic shock (TBI+HS) elicit a complex inflammatory response that contributes to secondary brain injury. There is currently no proven pharmacologic treatment for TBI+HS, but modulation of the epigenome has been shown to be a promising strategy. The aim of this study was to investigate whether valproic acid (VPA), a histone deacetylase inhibitor, modulates the expression of cerebral inflammatory gene profiles in a large animal model of TBI+HS. Ten Yorkshire swine were subjected to computer-controlled TBI+HS (40% blood volume). After 2 h of shock, animals were resuscitated with Hextend (HEX) or HEX+VPA (300 mg/kg, n = 5/group). Six hours after resuscitation, brains were harvested, RNA was isolated, and gene expression profiles were measured using a porcine microarray. Ingenuity Pathway Analysis® (IPA), gene ontology (GO), Parametric Gene Set Enrichment Analysis (PGSEA), and DAVID (Database for Annotation, Visualization, and Integrated Discovery) were used for pathway analysis. Key microarray findings were verified using real-time polymerase chain reaction (PCR). IPA analysis revealed that VPA significantly down-regulated the complement system (p < 0.001), natural killer cell communication (p < 0.001), and dendritic cell maturation (p < 0.001). DAVID analysis indicated that a cluster of inflammatory pathways held the highest rank and gene enrichment score. Real-time PCR data confirmed that VPA significantly down-expressed genes that ultimately regulate nuclear factor-kB (NF-kB)-mediated production of cytokines, such as TYROBP, TREM2, CCR1, and IL-1β. This high-throughput analysis of cerebral gene expression shows that addition of VPA to the resuscitation protocol significantly modulates the expression of inflammatory pathways in a clinically realistic model of TBI+HS.


Surgery | 2014

Development of a novel neuroprotective strategy: combined treatment with hypothermia and valproic acid improves survival in hypoxic hippocampal cells.

Guang Jin; Baoling Liu; Zerong You; Ted Bambakidis; Simone E. Dekker; Jake Maxwell; Ihab Halaweish; Durk Linzel; Hasan B. Alam

BACKGROUND Therapeutic hypothermia and histone deacetylase inhibitors, such as valproic acid (VPA), independently have been shown to have neuroprotective properties in models of cerebral ischemic and traumatic brain injury. However, the depth of hypothermia and the dose of VPA needed to achieve the desired result are logistically challenging. It remains unknown whether these two promising strategies can be combined to yield synergistic results. We designed an experiment to answer this question by subjecting hippocampal-derived HT22 cells to severe hypoxia in vitro. METHODS Mouse hippocampal HT22 cells were exposed to 200 μM cobalt chloride (CoCl(2)), which created hypoxic conditions in vitro. Cells were incubated for 6 or 30 hours under the following conditions: (1) Dulbeccos Modified Eagle Medium; (2) 200 μM CoCl(2); (3) 200 μM CoCl(2) plus 1 mmol/L VPA; (4) 200 μM CoCl(2) plus 32°C hypothermia; and (5) 200 μM CoCl(2) plus both 1 mmol/L VPA and 32°C hypothermia. Cellular viability was evaluated by (3-(4, 5-dimethylthiazol-2-yl)-2, 5-diphenyltetrazolium bromide) and lactate dehydrogenase release assays at 30 hours after treatment. Levels of acetylated histone H3, hypoxia-inducible factor-1α, phospho-GSK-3β, β-catenin, and high-mobility group box-1 were measured by Western blotting. RESULTS High levels of acetylated histone H3 were detected in the VPA-treated cells. The release of lactate dehydrogenase was greatly suppressed after the combined hypothermia + VPA treatment (0.269 ± 0.003) versus VPA (0.836 ± 0.026) or hypothermia (0.451 ± 0.005) treatments alone (n = 3, P = .0001). (3-(4, 5-dimethylthiazol-2-yl)-2, 5-diphenyltetrazolium bromide) assay showed that the number of viable cells was increased by 17.6 % when VPA and hypothermia were used in combination (n = 5, P = .0001). Hypoxia-inducible factor-1α and phospho-GSK-3β expression were synergistically affected by the combination treatment, whereas high-mobility group box-1 was increased by VPA treatment, and inhibited by the hypothermia. CONCLUSION This is the first study to demonstrate that the neuroprotective effects of VPA and hypothermia are synergistic. This novel approach can be used to develop more effective therapies for the prevention of neuronal death.


Journal of Neurotrauma | 2015

Fresh frozen plasma resuscitation provides neuroprotection compared to normal saline in a large animal model of traumatic brain injury and polytrauma.

Ayesha M. Imam; Guang Jin; Martin Sillesen; Simone E. Dekker; Ted Bambakidis; John O. Hwabejire; Cecilie H. Jepsen; Ihab Halaweish; Hasan B. Alam

We have previously shown that early treatment with fresh frozen plasma (FFP) is neuroprotective in a swine model of hemorrhagic shock (HS) and traumatic brain injury (TBI). However, it remains unknown whether this strategy would be beneficial in a more clinical polytrauma model. Yorkshire swine (42-50 kg) were instrumented to measure hemodynamic parameters, brain oxygenation, and intracranial pressure (ICP) and subjected to computer-controlled TBI and multi-system trauma (rib fracture, soft-tissue damage, and liver injury) as well as combined free and controlled hemorrhage (40% blood volume). After 2 h of shock (mean arterial pressure, 30-35 mm Hg), animals were resuscitated with normal saline (NS; 3×volume) or FFP (1×volume; n=6/group). Six hours postresuscitation, brains were harvested and lesion size and swelling were evaluated. Levels of endothelial-derived vasodilator endothelial nitric oxide synthase (eNOS) and vasoconstrictor endothelin-1 (ET-1) were also measured. FFP resuscitation was associated with reduced brain lesion size (1005.8 vs. 2081.9 mm(3); p=0.01) as well as swelling (11.5% vs. 19.4%; p=0.02). Further, FFP-resuscitated animals had higher brain oxygenation as well as cerebral perfusion pressures. Levels of cerebral eNOS were higher in the FFP-treated group (852.9 vs. 816.4 ng/mL; p=0.03), but no differences in brain levels of ET-1 were observed. Early administration of FFP is neuroprotective in a complex, large animal model of polytrauma, hemorrhage, and TBI. This is associated with a favorable brain oxygenation and cerebral perfusion pressure profile as well as higher levels of endothelial-derived vasodilator eNOS, compared to normal saline resuscitation.


Journal of Trauma-injury Infection and Critical Care | 2016

Histone deactylase gene expression profiles are associated with outcomes in blunt trauma patients

Martin Sillesen; Ted Bambakidis; Simone E. Dekker; Rasmus Fabricius; Peter Svenningsen; Peter James Bruhn; Lars Bo Svendsen; Jens Hillingsø; Hasan B. Alam

BACKGROUND Treatment with histone deacetylase (HDAC) inhibitors, such as valproic acid, increases survival in animal models of trauma and sepsis. Valproic acid is a pan-inhibitor that blocks most of the known HDAC isoforms. Targeting individual HDAC isoforms may increase survival and reduce complications, but little is known of the natural history of HDAC gene expression following trauma. We hypothesized that distinct HDAC isoform gene expression patterns would be associated with differences in outcomes following trauma. METHODS Twenty-eight–day longitudinal HDAC leukocyte gene expression profiles in 172 blunt trauma patients were extracted from the Inflammation and the Host Response to Injury (Glue Grant) data set. Outcome was classified as complicated (death or no recovery by Day 28, n = 51) or uncomplicated (n = 121). Mixed modeling was used to compare the HDAC expression trajectories between the groups, corrected for Injury Severity Score (ISS), base deficit, and volume of blood products transfused during the initial 12 hours following admission. Weighted gene correlation network analysis identified modules of genes with significant coexpression, and HDAC genes were mapped to these modules. Biologic function of these modules was investigated using the Gene Ontology database. RESULTS Elevated longitudinal HDAC expression trajectories for HDAC1, HDAC3, HDAC6, and HDAC11 were associated with complicated outcomes. In contrast, suppressed expression of Sirtuin 3 (SIRT3) was associated with adverse outcome (p < 0.01). Weighted gene correlation network analysis identified significant coexpression of HDAC and SIRT genes with genes involved in ribosomal function and down-regulation of protein translation in response to stress (HDAC1), T-cell signaling, and T-cell selection (HDAC3) as well as coagulation and hemostasis (SIRT3). No coexpression of HDAC11 was identified. CONCLUSION Expression trajectories of HDAC1, HDAC3, HDAC6, HDAC11, and SIRT3 correlate with outcomes following trauma and may potentially serve as biomarkers. They may also be promising targets for pharmacologic intervention. The effects of HDAC and SIRT gene expression in trauma may be mediated through pathways involved in ribosomal and T-cell function as well as coagulation and hemostasis. LEVEL OF EVIDENCE Prognostic study, level III.


Journal of Trauma-injury Infection and Critical Care | 2016

Early resuscitation with lyophilized plasma provides equal neuroprotection compared with fresh frozen plasma in a large animal survival model of traumatic brain injury and hemorrhagic shock.

Ihab Halaweish; Ted Bambakidis; Vahagn C. Nikolian; Patrick E. Georgoff; Peter James Bruhn; Patryk Piascik; Lisa Buckley; Ashok Srinivasan; Baoling Liu; Yongqing Li; Hasan B. Alam

BACKGROUND Combined traumatic brain injury (TBI) and hemorrhagic shock (HS) is highly lethal. In previous models of combined TBI + HS, we showed that early resuscitation with fresh frozen plasma (FFP) improves neurologic outcomes. Delivering FFP, however, in austere environments is difficult. Lyophilized plasma (LP) is a logistically superior alternative to FFP, but data are limited regarding its efficacy for treatment of TBI. We conducted this study to determine the safety and long-term outcomes of early treatment with LP in a large animal model of TBI + HS. METHODS Adult anesthetized swine underwent TBI and volume-controlled hemorrhage (40% blood volume) concurrently. After 2 hours of shock, animals were randomized (n = 5 per /group) to FFP or LP (1× shed blood) treatment. Serial blood gases were drawn, and thromboelastography was performed on citrated, kaolin-activated whole-blood samples. Five hours after treatment, packed red blood cells were administered, and animals recovered. A 32-point Neurologic Severity Score was assessed daily for 30 days (0 = normal, 32 = most severe injury). Cognitive functions were tested by training animals to retrieve food from color-coded boxes. Brain lesion size was measured on serial magnetic resonance imaging, and an autopsy was performed at 30 days. RESULTS The severity of shock and the degree of resuscitation were similar in both groups. Administration of FFP and LP was well tolerated with no differences in reversal of shock or thromboelastography parameters. Animals in both groups displayed the worst Neurologic Severity Score on postoperative Day 1 with rapid recovery and return to baseline within 7 days of injury. Lesion size on Day 3 in FFP-treated animals was 645 ± 85 versus 219 ± 20 mm3 in LP-treated animals (p < 0.05). There were no differences in cognitive functions or delayed treatment-related complications. CONCLUSIONS Early treatment with LP in TBI + HS is safe and provides neuroprotection that is comparable to FFP.


Journal of Trauma-injury Infection and Critical Care | 2016

Inhibition of histone deacetylase 6 restores intestinal tight junction in hemorrhagic shock.

Zhigang Chang; Yongqing Li; Wei He; Baoling Liu; Xiuzhen Duan; Ihab Halaweish; Ted Bambakidis; Baihong Pan; Yingjian Liang; Vahagn C. Nikolian; Patrick E. Georgoff; Hasan B. Alam

BACKGROUND We recently discovered that Tubastatin-A, a histone deacetylase (HDAC6) inhibitor, can improve survival in a rodent model of hemorrhagic shock (HS), but mechanisms remain poorly defined. In this study, we investigated whether Tubastatin-A could protect intestinal tight junction (TJ) in HS. METHODS In an in-vivo study with Wistar-Kyoto rats, the rats underwent HS (40% blood loss) followed by Tubastatin-A (70 mg/kg) treatment, without fluid resuscitation. The experimental groups were (1) sham (no hemorrhage, no treatment), (2) control (hemorrhage, without treatment), and (3) treatment (hemorrhage with Tubastatin-A administration). Six hours after hemorrhage, ileum was harvested. Whole cell lysate were analyzed for acetylated &agr;-tubulin (Ac-tubulin), total tubulin, acetylated histone 3 at lysine 9 (Ac-H3K9), &bgr;-actin, claudin-3 and zonula occludens 1 (ZO-1) proteins by Western blot. Histological effects of Tubastatin-A on small bowel were examined. In an in-vitro study, human intestinal epithelial cells (Caco-2) were divided into three groups: (1) sham (normoxia), (2) control (anoxia, no treatment), and (3) treatment (anoxia, treatment with Tubastatin-A). After 12 hours in an anoxia chamber, the cells were examined for Ac-tubulin and Ac-H3K9, cellular viability, cytotoxicity, claudin-3 and ZO-1 protein expression, and transwell permeability study. RESULTS Tubastatin-A treatment significantly attenuated HS-induced decreases of Ac-tubulin, Ac-H3K9, ZO-1 and claudin-3 proteins in small bowel in-vivo (p < 0.05). In cultured Caco-2 cells, anoxia significantly decreased cellular viability (p < 0.001) and increased cytotoxicity (p < 0.001) compared to the sham group, while Tubastatin-A treatment offered significant protection (p < 0.0001). Moreover, expression of claudin-3 was markedly decreased in vitro compared to the sham group, whereas this was significantly attenuated by Tubastatin-A (p < 0.05). Finally, anoxia markedly increased the permeability of Caco-2 monolayer cells (p < 0.05), while Tubastatin-A significantly attenuated the alteration (p < 0.05). CONCLUSION Inhibition of HDAC6 can induce Ac-tubulin and Ac-H3K9, promote cellular viability, and prevent the loss of intestinal tight junction proteins during HS and anoxia.

Collaboration


Dive into the Ted Bambakidis's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Baoling Liu

University of Michigan

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Guang Jin

University of Michigan

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Durk Linzel

University of Michigan

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge