Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Ted Weinert is active.

Publication


Featured researches published by Ted Weinert.


Science | 1995

Yeast Checkpoint Genes in DNA Damage Processing: Implications for Repair and Arrest

David Lydall; Ted Weinert

Yeast checkpoint control genes were found to affect processing of DNA damage as well as cell cycle arrest. An assay that measures DNA damage processing in vivo showed that the checkpoint genes RAD17, RAD24, and MEC3 activated an exonuclease that degrades DNA. The degradation is probably a direct consequence of checkpoint protein function, because RAD17 encodes a putative 3′-5′ DNA exonuclease. Another checkpoint gene, RAD9, had a different role: It inhibited the degradation by RAD17, RAD24, and MEC3. A model of how processing of DNA damage may be linked to both DNA repair and cell cycle arrest is proposed.


Cell | 1998

DNA Damage and Checkpoint Pathways: Molecular Anatomy and Interactions with Repair

Ted Weinert

The molecular anatomy underlying many aspects of checkpoint controls, including binding and phosphorylation events, is now being uncovered. Descriptions of how the controls then mediate downstream responses of arrest and transcriptional regulation are also achieving definition. Why Mec1 and Rad53 are essential has a plausible explanation in their regulation of dNTP levels, related indirectly to chromosome replication and repair. Many questions remain unresolved, especially concerning how checkpoint proteins might interface directly with repair and replication proteins. The power of reductionist approaches together with interest in this field promises an ever more complete description of checkpoint pathways. Perhaps in another decade the understanding of a sufficient number of details may allow us to even manipulate them for medical benefit. Well, maybe two decades.


Current Opinion in Genetics & Development | 1998

DNA damage checkpoints update: getting molecular

Ted Weinert

Eukaryotic checkpoint controls impose delays in the cell cycle in response to DNA damage or defects in DNA replication. Genetic and physiological studies in budding yeast have identified key genes and defined genetic pathways involved in checkpoint-mediated responses. Recent studies now lead to biochemical models that explain at least in part the arrest in G1 and delays during DNA replication after damage. Though progress in checkpoint controls has indeed been rapid, several observations identify puzzling aspects of checkpoint controls with few plausible explanations.


Molecular and Cellular Biology | 1990

Characterization of RAD9 of Saccharomyces cerevisiae and evidence that its function acts posttranslationally in cell cycle arrest after DNA damage.

Ted Weinert; Leland H. Hartwell

In eucaryotic cells, incompletely replicated or damaged chromosomes induce cell cycle arrest in G2 before mitosis, and in the yeast Saccharomyces cerevisiae the RAD9 gene is essential for the cell cycle arrest (T.A. Weinert and L. H. Hartwell, Science 241:317-322, 1988). In this report, we extend the analysis of RAD9-dependent cell cycle control. We found that both induction of RAD9-dependent arrest in G2 and recovery from arrest could occur in the presence of the protein synthesis inhibitor cycloheximide, showing that the mechanism of RAD9-dependent control involves a posttranslational mechanism(s). We have isolated and determined the DNA sequence of the RAD9 gene, confirming the DNA sequence reported previously (R. H. Schiestl, P. Reynolds, S. Prakash, and L. Prakash, Mol. Cell. Biol. 9:1882-1886, 1989). The predicted protein sequence for the Rad9 protein bears no similarity to sequences of known proteins. We also found that synthesis of the RAD9 transcript in the cell cycle was constitutive and not induced by X-irradiation. We constructed yeast cells containing a complete deletion of the RAD9 gene; the rad9 null mutants were viable, sensitive to X- and UV irradiation, and defective for cell cycle arrest after DNA damage. Although Rad+ and rad9 delta cells had similar growth rates and cell cycle kinetics in unirradiated cells, the spontaneous rate of chromosome loss (in unirradiated cells) was elevated 7- to 21-fold in rad9 delta cells. These studies show that in the presence of induced or endogenous DNA damage, RAD9 is a negative regulator that inhibits progression from G2 in order to preserve cell viability and to maintain the fidelity of chromosome transmission.


The EMBO Journal | 1999

RAD53, DUN1 and PDS1 define two parallel G2/M checkpoint pathways in budding yeast

Richard Gardner; Charles W. Putnam; Ted Weinert

Eukaryotic checkpoint genes regulate multiple cellular responses to DNA damage. In this report, we examine the roles of budding yeast genes involved in G2/M arrest and tolerance to UV exposure. A current model posits three gene classes: those encoding proteins acting on damaged DNA (e.g. RAD9 and RAD24), those transducing a signal (MEC1, RAD53 and DUN1) or those participating more directly in arrest (PDS1). Here, we define important features of the pathways subserved by those genes. MEC1, which we find is required for both establishment and maintenance of G2/M arrest, mediates this arrest through two parallel pathways. One pathway requires RAD53 and DUN1 (the ‘RAD53 pathway’); the other pathway requires PDS1. Each pathway independently contributes ∼50% to G2/M arrest, effects demonstrable after cdc13‐induced damage or a double‐stranded break inflicted by the HO endonuclease. Similarly, both pathways contribute independently to tolerance of UV irradiation. How the parallel pathways might interact ultimately to achieve arrest is not yet understood, but we do provide evidence that neither the RAD53 nor the PDS1 pathway appears to maintain arrest by inhibiting adaptation. Instead, we think it likely that both pathways contribute to establishing and maintaining arrest.


Molecular Genetics and Genomics | 1997

G2/M checkpoint genes of Saccharomyces cerevisiae: Further evidence for roles in DNA replication and/or repair

David Lydall; Ted Weinert

Abstract We have cloned, sequenced and disrupted the checkpoint genes RAD17, RAD24 and MEC3 of Saccharomyces cerevisiae. Mec3p shows no strong similarity to other proteins currently in the database. Rad17p is similar to Rec1 from Ustilago maydis, a 3′ to 5′ DNA exonuclease/checkpoint protein, and the checkpoint protein Rad1p from Schizosaccharomyces pombe (as we previously reported). Rad24p shows sequence similarity to replication factor C (RFC) subunits, and the S. pombe Rad17p checkpoint protein, suggesting it has a role in DNA replication and/or repair. This hypothesis is supported by our genetic experiments which show that overexpression of RAD24 strongly reduces the growth rate of yeast strains that are defective in the DNA replication/repair proteins Rfc1p (cdc44), DNA polα (cdc17) and DNA polδ (cdc2) but has much weaker effects on cdc6, cdc9, cdc15 and CDC+ strains. The idea that RAD24 overexpression induces DNA damage, perhaps by interfering with replication/repair complexes, is further supported by our observation that RAD24 overexpression increases mitotic chromosome recombination in CDC+strains. Although RAD17, RAD24 and MEC3 are not required for cell cycle arrest when S phase is inhibited by hydroxyurea (HU), they do contribute to the viability of yeast cells grown in the presence of HU, possibly because they are required for the repair of HU-induced DNA damage. In addition, all three are required for the rapid death of cdc13 rad9 mutants. All our data are consistent with models in which RAD17, RAD24 and MEC3 are coordinately required for the activity of one or more DNA repair pathways that link DNA damage to cell cycle arrest.


Journal of Cell Science | 1989

Control of G2 delay by the RAD9 gene of Saccharomyces cerevisiae

Ted Weinert; Leland H. Hartwell

Summary In response to DNA damage, Saccharomyces cerevisiae cells arrest the cell cycle in the G2 phase. Arrest is defective in rad9 mutants; rad9 cells divide and die without repairing the damage. Several cell cycle mutants that are defective in DNA replication arrest in G2 at the restrictive temperature; this arrest is due to the RAD9 control function. Thus RAD9 is responsible for the fact that mitosis is normally dependent upon DNA replication, a function we term a ‘checkpoint’. Four additional genes have been identified that are also components of the RAD9 checkpoint.


Current Opinion in Genetics & Development | 1996

From DNA damage to cell cycle arrest and suicide: a budding yeast perspective

David Lydall; Ted Weinert

Eukaryotic checkpoint control genes are important for cell cycle delay, DNA repair and cell suicide after DNA is damaged. Recent studies in budding yeast show how the participation of checkpoint control proteins in DNA metabolism could lead to all three of these outcomes.


Radiation Research | 1992

Dual cell cycle checkpoints sensitive to chromosome replication and DNA damage in the budding yeast Saccharomyces cerevisiae

Ted Weinert

In eucaryotic cells chromosomes must be fully replicated and repaired before mitosis begins. Genetic studies indicate that this dependence of mitosis on completion of DNA replication and DNA repair derives from a negative control called a checkpoint which somehow checks for replication and DNA damage and blocks cell entry into mitosis. Here we summarize our current understanding of the genetic components of the cell cycle checkpoint in budding yeast. Mutants were identified and their phase and signal specificity tested primarily through interactions of the arrest-defective mutants with cell division cycle mutants. The results indicate that dual checkpoint controls exist in budding yeast, one control sensitive to inhibition of DNA replication (S-phase checkpoint), and a distinct but overlapping control sensitive to DNA repair (G2 checkpoint). Six genes are required for arrest in G2 phase after DNA damage (RAD9, RAD17, RAD24, MEC1, MEC2, and MEC3), and two of these are also essential for arrest in S phase when DNA replication is blocked (MEC1 and MEC2).


Seminars in Cell & Developmental Biology | 2011

DNA replication: Failures and inverted fusions

Antony M. Carr; Andrew L. Paek; Ted Weinert

DNA replication normally follows the rules passed down from Watson and Crick: the chromosome duplicates as dictated by its antiparallel strands, base-pairing and leading and lagging strand differences. Real-life replication is more complicated, fraught with perils posed by chromosome damage for one, and by transcription of genes and by other perils that disrupt progress of the DNA replication machinery. Understanding the replication fork, including DNA structures, associated replisome and its regulators, is key to understanding how cells overcome perils and minimize error. Replication fork error leads to genome rearrangements and, potentially, cell death. Interest in the replication fork and its errors has recently gained added interest by the results of deep sequencing studies of human genomes. Several pathologies are associated with sometimes-bizarre genome rearrangements suggestive of elaborate replication fork failures. To try and understand the links between the replication fork, its failure and genome rearrangements, we discuss here phases of fork behavior (stall, collapse, restart and fork failures leading to rearrangements) and analyze two examples of instability from our own studies; one in fission yeast and the other in budding yeast.

Collaboration


Dive into the Ted Weinert's collaboration.

Top Co-Authors

Avatar

Leland H. Hartwell

Fred Hutchinson Cancer Research Center

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

B. Garvik

University of Washington

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge