Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Teele Jairus is active.

Publication


Featured researches published by Teele Jairus.


Science | 2015

Global assessment of arbuscular mycorrhizal fungus diversity reveals very low endemism

John Davison; Mari Moora; Maarja Öpik; A. Adholeya; Leho Ainsaar; Amadou Bâ; S. Burla; Abdala G. Diédhiou; Inga Hiiesalu; Teele Jairus; Nancy Collins Johnson; A. Kane; Kadri Koorem; M. Kochar; C. Ndiaye; Meelis Pärtel; Ülle Reier; Ülle Saks; R. Singh; Martti Vasar; Martin Zobel

Cosmopolitan plant root symbionts The aboveground lives of plants are only sustainable because of the symbiotic soil fungi that encase their roots. These fungi swap nutrients with plants, defend them from attack, and help them withstand abrupt environmental changes. Out of necessity, fungal symbionts in the soil would appear to be restricted and local to certain plant species. Davison et al., however, discovered that some taxa are globally distributed. How these underground fungi have dispersed so widely remains a mystery; perhaps human farmers have had something to do with it. Science, this issue p. 970 The wide distribution of plant-root fungal symbionts seems to be driven by recent dispersal rather than ancient tectonics. The global biogeography of microorganisms remains largely unknown, in contrast to the well-studied diversity patterns of macroorganisms. We used arbuscular mycorrhizal (AM) fungus DNA from 1014 plant-root samples collected worldwide to determine the global distribution of these plant symbionts. We found that AM fungal communities reflected local environmental conditions and the spatial distance between sites. However, despite AM fungi apparently possessing limited dispersal ability, we found 93% of taxa on multiple continents and 34% on all six continents surveyed. This contrasts with the high spatial turnover of other fungal taxa and with the endemism displayed by plants at the global scale. We suggest that the biogeography of AM fungi is driven by unexpectedly efficient dispersal, probably via both abiotic and biotic vectors, including humans.


Mycorrhiza | 2013

Global sampling of plant roots expands the described molecular diversity of arbuscular mycorrhizal fungi.

Maarja Öpik; Martin Zobel; Juan José Cantero; John Davison; José M. Facelli; Inga Hiiesalu; Teele Jairus; Jesse M. Kalwij; Kadri Koorem; Miguel E. Leal; Jaan Liira; Madis Metsis; Valentina Neshataeva; Jaanus Paal; Cherdchai Phosri; Sergei Põlme; Ülle Reier; Ülle Saks; Heidy Schimann; Odile Thiéry; Martti Vasar; Mari Moora

We aimed to enhance understanding of the molecular diversity of arbuscular mycorrhizal fungi (AMF) by building a new global dataset targeting previously unstudied geographical areas. In total, we sampled 96 plant species from 25 sites that encompassed all continents except Antarctica. AMF in plant roots were detected by sequencing the nuclear SSU rRNA gene fragment using either cloning followed by Sanger sequencing or 454-sequencing. A total of 204 AMF phylogroups (virtual taxa, VT) were recorded, increasing the described number of Glomeromycota VT from 308 to 341 globally. Novel VT were detected from 21 sites; three novel but nevertheless widespread VT (Glomus spp. MO-G52, MO-G53, MO-G57) were recorded from six continents. The largest increases in regional VT number were recorded in previously little-studied Oceania and in the boreal and polar climatic zones — this study providing the first molecular data from the latter. Ordination revealed differences in AM fungal communities between different continents and climatic zones, suggesting that both biogeographic history and environmental conditions underlie the global variation of those communities. Our results show that a considerable proportion of Glomeromycota diversity has been recorded in many regions, though further large increases in richness can be expected in remaining unstudied areas.


Environmental Microbiology | 2008

Forest microsite effects on community composition of ectomycorrhizal fungi on seedlings of Picea abies and Betula pendula

Leho Tedersoo; Triin Suvi; Teele Jairus; Urmas Kõljalg

Niche differentiation in soil horizons, host species and natural nutrient gradients contribute to the high diversity of ectomycorrhizal fungi in boreal forests. This study aims at documenting the diversity and community composition of ectomycorrhizal fungi of Norway spruce (Picea abies) and silver birch (Betula pendula) seedlings in five most abundant microsites in three Estonian old-growth forests. Undisturbed forest floor, windthrow mounds and pits harboured more species than brown- and white-rotted wood. Several species of ectomycorrhizal fungi were differentially represented on either hosts, microsites and sites. Generally, the most frequent species in dead wood were also common in forest floor soil. Ordination analyses suggested that decay type determined the composition of EcM fungal community in dead wood. Root connections with in-growing mature tree roots from below affected the occurrence of certain fungal species on seedling roots systems in dead wood. This study demonstrates that ectomycorrhizal fungi differentially establish in certain forest microsites that is attributable to their dispersal and competitive abilities. Elevated microsites, especially decayed wood, act as seed beds for both ectomycorrhizal forest trees and fungi, thus affecting the succession of boreal forest ecosystems.


Molecular Ecology | 2011

Spatial structure and the effects of host and soil environments on communities of ectomycorrhizal fungi in wooded savannas and rain forests of Continental Africa and Madagascar

Leho Tedersoo; Mohammad Bahram; Teele Jairus; Eneke Esoeyang Tambe Bechem; Stephen Chinoya; Rebecca Mpumba; Miguel E. Leal; Emile Randrianjohany; Sylvain G. Razafimandimbison; Ave Sadam; Triin Naadel; Urmas Kõljalg

Mycorrhizal fungi play a key role in mineral nutrition of terrestrial plants, but the factors affecting natural distribution, diversity and community composition of particularly tropical fungi remain poorly understood. This study addresses shifts in community structure and species frequency of ectomycorrhizal (EcM) fungi in relation to host taxa, soil depth and spatial structure in four contrasting African ecosystems. We used the rDNA and plastid trnL intron sequence analysis for identification of fungi and host plants, respectively. By partitioning out spatial autocorrelation in plant and fungal distribution, we suggest that African EcM fungal communities are little structured by soil horizon and host at the plant species and family levels. These findings contrast with patterns of vegetation in these forests and EcM fungal communities in other tropical and temperate ecosystems. The low level of host preference indirectly supports an earlier hypothesis that pioneer Phyllanthaceae may facilitate the establishment of late successional Fabaceae and potentially other EcM host trees by providing compatible fungal inoculum in deforested and naturally disturbed ecosystems of tropical Africa.


FEMS Microbiology Ecology | 2014

Anthropogenic land use shapes the composition and phylogenetic structure of soil arbuscular mycorrhizal fungal communities

Mari Moora; John Davison; Maarja Öpik; Madis Metsis; Ülle Saks; Teele Jairus; Martti Vasar; Martin Zobel

Arbuscular mycorrhizal (AM) fungi play an important role in ecosystems, but little is known about how soil AM fungal community composition varies in relation to habitat type and land-use intensity. We molecularly characterized AM fungal communities in soil samples (n = 88) from structurally open (permanent grassland, intensive and sustainable agriculture) and forested habitats (primeval forest and spruce plantation). The habitats harboured significantly different AM fungal communities, and there was a broad difference in fungal community composition between forested and open habitats, the latter being characterized by higher average AM fungal richness. Within both open and forest habitats, intensive land use significantly influenced community composition. There was a broad difference in the phylogenetic structure of AM fungal communities between mechanically disturbed and nondisturbed habitats. Taxa from Glomeraceae served as indicator species for the nondisturbed habitats, while taxa from Archaeosporaceae, Claroideoglomeraceae and Diversisporaceae were indicators for the disturbed habitats. The distribution of these indicator taxa among habitat types in the MaarjAM global database of AM fungal diversity was in accordance with their local indicator status.


PLOS ONE | 2011

Tidying up international nucleotide sequence databases : ecological, geographical and sequence quality annotation of its sequences of mycorrhizal fungi.

Leho Tedersoo; Kessy Abarenkov; R. Henrik Nilsson; Arthur Schüssler; Gwen Grelet; Petr Kohout; Jane Oja; Gregory Bonito; Vilmar Veldre; Teele Jairus; Martin Ryberg; Karl-Henrik Larsson; Urmas Kõljalg

Sequence analysis of the ribosomal RNA operon, particularly the internal transcribed spacer (ITS) region, provides a powerful tool for identification of mycorrhizal fungi. The sequence data deposited in the International Nucleotide Sequence Databases (INSD) are, however, unfiltered for quality and are often poorly annotated with metadata. To detect chimeric and low-quality sequences and assign the ectomycorrhizal fungi to phylogenetic lineages, fungal ITS sequences were downloaded from INSD, aligned within family-level groups, and examined through phylogenetic analyses and BLAST searches. By combining the fungal sequence database UNITE and the annotation and search tool PlutoF, we also added metadata from the literature to these accessions. Altogether 35,632 sequences belonged to mycorrhizal fungi or originated from ericoid and orchid mycorrhizal roots. Of these sequences, 677 were considered chimeric and 2,174 of low read quality. Information detailing country of collection, geographical coordinates, interacting taxon and isolation source were supplemented to cover 78.0%, 33.0%, 41.7% and 96.4% of the sequences, respectively. These annotated sequences are publicly available via UNITE (http://unite.ut.ee/) for downstream biogeographic, ecological and taxonomic analyses. In European Nucleotide Archive (ENA; http://www.ebi.ac.uk/ena/), the annotated sequences have a special link-out to UNITE. We intend to expand the data annotation to additional genes and all taxonomic groups and functional guilds of fungi.


New Phytologist | 2011

Invasion potential and host shifts of Australian and African ectomycorrhizal fungi in mixed eucalypt plantations

Teele Jairus; Rebecca Mpumba; Stephen Chinoya; Leho Tedersoo

• Transportation of forestry materials results in unintended co-introduction of nonnative species that may cause enormous ecological or economic damage. While the invasion ecology of plants and animals is relatively well-known, that of microorganisms, except aboveground pathogens, remains poorly understood. • This work addresses host shifts and invasion potential of root symbiotic ectomycorrhizal fungi that were co-introduced with Australian eucalypts and planted in clear-cut miombo woodlands in Zambia, south-central Africa. • By use of rDNA and plastid intron sequence analysis for identification and phylogenetic techniques for inferring fungal origin, we demonstrated that host shifts were uncommon in the Australian fungi, but frequent in the African fungi, especially in mixed plantations where roots of different trees intermingle. • There was evidence for naturalization, but not for invasion by Australian ectomycorrhizal fungi. Nevertheless, the fungi introduced may pose an invasion risk along with further adaptation to local soil environment and host trees. Inoculation of eucalypts with native edible fungi may ameliorate the potential invasion risks of introduced fungi and provide an alternative source of nutrition.


FEMS Microbiology Ecology | 2016

Symbiont dynamics during ecosystem succession: co-occurring plant and arbuscular mycorrhizal fungal communities

David García de León; Mari Moora; Maarja Öpik; Lena Neuenkamp; Maret Gerz; Teele Jairus; Martti Vasar; C. Guillermo Bueno; John Davison; Martin Zobel

Although mycorrhizas are expected to play a key role in community assembly during ecological succession, little is known about the dynamics of the symbiotic partners in natural systems. For instance, it is unclear how efficiently plants and arbuscular mycorrhizal (AM) fungi disperse into early successional ecosystems, and which, if either, symbiotic partner drives successional dynamics. This study describes the dynamics of plant and AM fungal communities, assesses correlation in the composition of plant and AM fungal communities and compares dispersal limitation of plants and AM fungi during succession. We studied gravel pits 20 and 50 years post abandonment and undisturbed grasslands in Western Estonia. The composition of plant and AM fungal communities was strongly correlated, and the strength of the correlation remained unchanged as succession progressed, indicating a stable dependence among mycorrhizal plants and AM fungi. A relatively high proportion of the AM fungal taxon pool was present in early successional sites, in comparison with the respective fraction of plants. These results suggest that AM fungi arrived faster than plants and may thus drive vegetation dynamics along secondary vegetation succession.


Environmental Microbiology | 2015

The composition of arbuscular mycorrhizal fungal communities in the roots of a ruderal forb is not related to the forest fragmentation process.

Gabriel Grilli; Carlos Urcelay; Leonardo Galetto; John Davison; Martti Vasar; Ülle Saks; Teele Jairus; Maarja Öpik

Land-use changes and forest fragmentation have strong impact on biodiversity. However, little is known about the influence of new landscape configurations on arbuscular mycorrhizal fungal (AMF) community composition. We used 454 pyrosequencing to assess AMF diversity in plant roots from a fragmented forest. We detected 59 virtual taxa (VT; phylogenetically defined operational taxonomic units) of AMF - including 10 new VT - in the roots of Euphorbia acerensis. AMF communities were mainly composed of members of family Glomeraceae and were similar throughout the fragmented landscape, despite variation in forest fragment size (i.e. small, medium and large) and isolation (i.e. varying pairwise distances). AMF communities in forest fragments were phylogenetically clustered compared with the global, but not regional and local AMF taxon pools. This indicates that non-random community assembly processes possibly related to dispersal limitation at a large scale, rather than habitat filtering or biotic interactions, may be important in structuring the AMF communities. In this system, forest fragmentation did not appear to influence AMF community composition in the roots of the ruderal plant. Whether this is true for AMF communities in soil and the roots of other ecological groups of host plants or in other habitats deserves further study.


Molecular Ecology | 2016

Sequence variation in nuclear ribosomal small subunit, internal transcribed spacer and large subunit regions of Rhizophagus irregularis and Gigaspora margarita is high and isolate-dependent.

Odile Thiéry; Martti Vasar; Teele Jairus; John Davison; Christophe Roux; Paula-Ann Kivistik; Andres Metspalu; Lili Milani; Ülle Saks; Mari Moora; Martin Zobel; Maarja Öpik

Arbuscular mycorrhizal (AM) fungi are known to exhibit high intra‐organism genetic variation. However, information about intra‐ vs. interspecific variation among the genes commonly used in diversity surveys is limited. Here, the nuclear small subunit (SSU) rRNA gene, internal transcribed spacer (ITS) region and large subunit (LSU) rRNA gene portions were sequenced from 3 to 5 individual spores from each of two isolates of Rhizophagus irregularis and Gigaspora margarita. A total of 1482 Sanger sequences (0.5 Mb) from 239 clones were obtained, spanning ~4370 bp of the ribosomal operon when concatenated. Intrasporal and intra‐isolate sequence variation was high for all three regions even though variant numbers were not exhausted by sequencing 12–40 clones per isolate. Intra‐isolate nucleotide variation levels followed the expected order of ITS > LSU > SSU, but the values were strongly dependent on isolate identity. Single nucleotide polymorphism (SNP) densities over 4 SNP/kb in the ribosomal operon were detected in all four isolates. Automated operational taxonomic unit picking within the sequence set of known identity overestimated species richness with almost all cut‐off levels, markers and isolates. Average intraspecific sequence similarity values were 99%, 96% and 94% for amplicons in SSU, LSU and ITS, respectively. The suitability of the central part of the SSU as a marker for AM fungal community surveys was further supported by its level of nucleotide variation, which is similar to that of the ITS region; its alignability across the entire phylum; its appropriate length for next‐generation sequencing; and its ease of amplification in single‐step PCR.

Collaboration


Dive into the Teele Jairus's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Leho Tedersoo

American Museum of Natural History

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge