Teemu Pennanen
King's College London
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Teemu Pennanen.
Numerische Mathematik | 2005
Teemu Pennanen; Matti Koivu
Summary.The simplest and the best-known method for numerical approximation of high-dimensional integrals is the Monte Carlo method (MC), i.e. random sampling. MC has also become the most popular method for constructing numerically solvable approximations of stochastic programs. However, certain modern integration quadratures are often superior to crude MC in high-dimensional integration, so it seems natural to try to use them also in discretization of stochastic programs. This paper derives conditions that guarantee the epi-convergence of the resulting objectives to the original one. Our epi-convergence result is closely related to some of the existing ones but it is easier to apply to discretizations and it allows the feasible set to depend on the probability measure. As examples, we prove epi-convergence of quadrature-based discretizations of three different models of portfolio management and we study their behavior numerically. Besides MC, our discretizations are the only existing ones with guaranteed epi-convergence for these problem classes. In our tests, modern quadratures seem to result in faster convergence of optimal values than MC.
Mathematics of Operations Research | 2005
Teemu Pennanen
In many dynamic stochastic optimization problems in practice, the uncertain factors are best modeled as random variables with an infinite support. This results in infinite-dimensional optimization problems that can rarely be solved directly. Therefore, the random variables (stochastic processes) are often approximated by finitely supported ones (scenario trees), which result in finite-dimensional optimization problems that are more likely to be solvable by available optimization tools. This paper presents conditions under which such finite-dimensional optimization problems can be shown to epi-converge to the original infinite-dimensional problem. Epi-convergence implies the convergence of optimal values and solutions as the discretizations are made finer. Our convergence result applies to a general class of convex problems where neither linearity nor complete recourse are assumed.
Mathematical Programming | 2008
Teemu Pennanen
This paper presents procedures for constructing numerically solvable discretizations of multistage stochastic programs that epi-converge to the original problem as the discretizations are made finer. Epi-convergence implies, in particular, that the cluster points of the first-stage solutions of the discretized problems are optimal first-stage solutions of the original problem. The discretization procedures apply to a general class of nonlinear stochastic programs where the uncertain factors are driven by time series models. Using existing routines for numerical integration allows for an easy and efficient implementation of the procedures.
Annals of Operations Research | 2007
Petri Hilli; Matti Koivu; Teemu Pennanen; Antero Ranne
This paper describes a stochastic programming model that was developed for asset liability management of a Finnish pension insurance company. In many respects the model resembles those presented in the literature, but it has some unique features stemming from the statutory restrictions for Finnish pension insurance companies. Particular attention is paid to modeling the stochastic factors, numerical solution of the resulting optimization problem and evaluation of the solution. Out-of-sample tests clearly favor the strategies suggested by our model over static fixed-mix and dynamic portfolio insurance strategies.
Siam Journal on Optimization | 2002
Alfredo N. Iusem; Teemu Pennanen; B. F. Svaiter
This paper studies convergence properties of inexact variants of the proximal point algorithm when applied to a certain class of nonmonotone mappings. The presented algorithms allow for constant relative errors, in the line of the recently proposed hybrid proximal-extragradient algorithm. The main convergence result extends a recent work of the second author, where exact solutions for the proximal subproblems were required. We also show that the linear convergence property is preserved in the case when the inverse of the operator is locally Lipschitz continuous near the origin. As an application, we give a convergence analysis for an inexact version of the proximal method of multipliers for a rather general family of problems which includes variational inequalities and constrained optimization problems.
Siam Journal on Financial Mathematics | 2010
Teemu Pennanen; Irina Penner
We study superhedging of contingent claims with physical delivery in a discrete-time market model with convex transaction costs. Our model extends Kabanovs currency market model by allowing for nonlinear illiquidity effects. We show that an appropriate generalization of Schachermayers robust no-arbitrage condition implies that the set of claims hedgeable with zero cost is closed in probability. Combined with classical techniques of convex analysis, the closedness yields a dual characterization of premium processes that are sufficient to superhedge a given claim process. We also extend the fundamental theorem of asset pricing for general conical models.
International Journal of Theoretical and Applied Finance | 2005
Alan J. King; Matti Koivu; Teemu Pennanen
This paper proposes a numerical approach for computing bounds for the arbitrage-free prices of an option when some options are available for trading. Convex duality reveals a close relationship with recently proposed calibration techniques and implied trees. Our approach is intimately related to the uncertain volatility model of Avellaneda, Levy and Paras, but it is more general in that it is not based on any particular form of the asset price process and does not require the sellers price of an option to be a differentiable function of the cash-flows of the option. Numerical tests on S&P500 options demonstrate the accuracy and robustness of the proposed method.
Journal of Mathematical Analysis and Applications | 2002
Patrick L. Combettes; Teemu Pennanen
The mean iteration scheme originally proposed by Mann is extended to a broad class of relaxed, inexact fixed point algorithms in Hilbert spaces. Weak and strong convergence results are established under general conditions on the underlying averaging process and the type of operators involved. This analysis significantly widens the range of applications of mean iteration methods. Several examples are given.
Mathematical Finance | 2011
Teemu Pennanen
We study superhedging of securities that give random payments possibly at multiple dates. Such securities are common in practice where, due to illiquidity, wealth cannot be transferred quite freely in time. We generalize some classical characterizations of superhedging to markets where trading costs may depend nonlinearly on traded amounts and portfolios may be subject to constraints. In addition to classical frictionless markets and markets with transaction costs or bid-ask spreads, our model covers markets with nonlinear illiquidity effects for large instantaneous trades. The characterizations are given in terms of stochastic term structures which generalize term structures of interest rates beyond fixed income markets as well as martingale densities beyond stochastic markets with a cash account. The characterizations are valid under a topological condition and a minimal consistency condition, both of which are implied by the no arbitrage condition in the case of classical perfectly liquid market models. We give alternative sufficient conditions that apply to market models with general convex cost functions and portfolio constraints.
Siam Journal on Control and Optimization | 2004
Patrick L. Combettes; Teemu Pennanen
Conditions are given for the viability and the weak convergence of an inexact, relaxed proximal point algorithm for finding a common zero of countably many cohypomonotone operators in a Hilbert space. In turn, new convergence results are obtained for an extended version of the proximal method of multipliers in nonlinear programming.