Teis Esben Sondergaard
Aalborg University
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Teis Esben Sondergaard.
Plant Physiology | 2004
Teis Esben Sondergaard; Alexander Schulz; Michael G. Palmgren
Much has been learned about the energization of nutrient transport since Hoagland in 1944 gave his famous series of lectures on plant nutrition. Already at that time it was speculated that energy for transport of solutes into cells was provided by compounds containing energy-rich phosphate bonds (Hoagland, 1944). We now know that ATP-consuming proton pumps drive nutrient transport at several entry points in the plant body. In this Update, we will focus on those entry points within the plant body where nutrient transport is intense, and we will discuss their energization and regulation by proton pumps.
International Journal of Food Microbiology | 2012
Frederik Teilfeldt Hansen; Jens Sörensen; Henriette Giese; Teis Esben Sondergaard; Rasmus John Normand Frandsen
Fusarium species produce a plethora of bioactive polyketides and nonribosomal peptides that give rise to health problems in animals and may have drug development potential. Using the genome sequences for Fusarium graminearum, F. oxysporum, F. solani and F. verticillioides we developed a framework for future polyketide synthases (PKSs) and nonribosomal peptides synthetases (NRPSs) nomenclature assignment and classification. Sequence similarities of the adenylation and ketosynthase domain sequences were used to group the identified NRPS and PKS genes. We present the current state of knowledge of PKS and NRPS genes in sequenced Fusarium species and their known products. With the rapid increase in the number of sequenced fungal genomes a systematic classification will greatly aid the scientific community in obtaining an overview of the number of different NRPS and PKS genes and their potential as producers of known bioactive compounds.
Environmental Microbiology | 2012
Jens Sörensen; Frederik Teilfeldt Hansen; Teis Esben Sondergaard; Dan Staerk; T. Verne Lee; Reinhard Wimmer; Louise Graabæk Klitgaard; Stig Purup; Henriette Giese; Rasmus John Normand Frandsen
Like many other filamentous fungi, Fusarium graminearum has the genetic potential to produce a vast array of unknown secondary metabolites. A promising approach to determine the nature of these is to activate silent secondary metabolite gene clusters through constitutive expression of cluster specific transcription factors. We have developed a system in which an expression cassette containing the transcription factor from the targeted PKS cluster disrupts the production of the red mycelium pigment aurofusarin. This aids with identification of mutants as they appear as white colonies and metabolite analyses where aurofusarin and its intermediates are normally among the most abundant compounds. The system was used for constitutive expression of the local transcription factor from the PKS9 cluster (renamed FSL) leading to production of three novel fusarielins, F, G and H. This group of compounds has not previously been reported from F. graminearum or linked to a biosynthetic gene in any fungal species. The toxicity of the three novel fusarielins was examined against colorectal cancer cell lines where fusarielin H was more potent than fusarielin F and G.
Autophagy | 2012
Lone Josefsen; Aida Droce; Teis Esben Sondergaard; Jens Sörensen; Jörg Bormann; Wilhelm Schäfer; Henriette Giese; Stefan Olsson
The role of autophagy in necrotrophic fungal physiology and infection biology is poorly understood. We have studied autophagy in the necrotrophic plant pathogen Fusarium graminearum in relation to development of nonassimilating structures and infection. We identified an ATG8 homolog F. graminearum ATG8 whose first 116 amino acids before the predicted ATG4 cleavage site are 100% identical to Podospora anserina ATG8. We generated a ΔFgatg8 mutant by gene replacement and showed that this cannot form autophagic compartments. The strain forms no perithecia, has reduced conidia production and the aerial mycelium collapses after a few days in culture. The collapsing aerial mycelium contains lipid droplets indicative of nitrogen starvation and/or an inability to use storage lipids. The capacity to use carbon/energy stored in lipid droplets after a shift from carbon rich conditions to carbon starvation is severely inhibited in the ΔFgatg8 strain demonstrating autophagy-dependent lipid utilization, lipophagy, in fungi. Radial growth rate of the ΔFgatg8 strain is reduced compared with the wild type and the mutant does not grow over inert plastic surfaces in contrast to the wild type. The ability to infect barley and wheat is normal but the mutant is unable to spread from spikelet to spikelet in wheat. Complementation by inserting the F. graminearum atg8 gene into a region adjacent to the actin gene in ΔFgatg8 fully restores the WT phenotype. The results showed that autophagy plays a pivotal role for supplying nutrients to nonassimilating structures necessary for growth and is important for plant colonization. This also indicates that autophagy is a central mechanism for fungal adaptation to nonoptimal C/N ratios.
Fungal Genetics and Biology | 2015
Frederik Teilfeldt Hansen; Donald M. Gardiner; Erik Lysøe; Patricia Romans Fuertes; Bettina Tudzynski; Philipp Wiemann; Teis Esben Sondergaard; Henriette Giese; Ditlev E. Brodersen; Jens Sörensen
Members of the genus Fusarium produce a plethora of bioactive secondary metabolites, which can be harmful to humans and animals or have potential in drug development. In this study we have performed comparative analyses of polyketide synthases (PKSs) and non-ribosomal peptide synthetases (NRPSs) from ten different Fusarium species including F. graminearum (two strains), F. verticillioides, F. solani, F. culmorum, F. pseudograminearum, F. fujikuroi, F. acuminatum, F. avenaceum, F. equiseti, and F. oxysporum (12 strains). This led to identification of 52 NRPS and 52 PKSs orthology groups, respectively, and although not all PKSs and NRPSs are assumed to be intact or functional, the analyses illustrate the huge secondary metabolite potential in Fusarium. In our analyses we identified a core collection of eight NRPSs (NRPS2-4, 6, 10-13) and two PKSs (PKS3 and PKS7) that are conserved in all strains analyzed in this study. The identified PKSs and NRPSs were named based on a previously developed classification system (www.FusariumNRPSPKS.dk). We suggest this system be used when PKSs and NRPSs have to be classified in future sequenced Fusarium strains. This system will facilitate identification of orthologous and non-orthologous NRPSs and PKSs from newly sequenced Fusarium genomes and will aid the scientific community by providing a common nomenclature for these two groups of genes/enzymes.
Journal of Clinical Microbiology | 2013
Marlene Fredborg; Klaus R. Andersen; Erik Jørgensen; Aida Droce; Tom Olesen; Bent Borg Jensen; Flemming Schønning Rosenvinge; Teis Esben Sondergaard
ABSTRACT Rapid antibiotic susceptibility testing is in high demand in health care fields as antimicrobial-resistant bacterial strains emerge and spread. Here, we describe an optical screening system (oCelloScope) which, based on time-lapse imaging of 96 bacteria-antibiotic combinations at a time, introduces real-time detection of bacterial growth and antimicrobial susceptibility with imaging material to support the automatically generated graphs. Automated antibiotic susceptibility tests of a monoculture showed statistically significant antibiotic effects within 6 min and within 30 min in complex samples from pigs suffering from catheter-associated urinary tract infections. The oCelloScope system provides a fast high-throughput screening method for detecting bacterial susceptibility that might entail an earlier diagnosis and introduction of appropriate targeted therapy and thus combat the threat from multidrug-resistant pathogenic bacteria. The oCelloScope system can be employed for a broad range of applications within bacteriology and might present new vistas as a point-of-care instrument in clinical and veterinary settings.
Veterinary Microbiology | 2010
Lone Abildgaard; Teis Esben Sondergaard; Ricarda M. Engberg; Andreas Schramm; Ole Højberg
The Clostridium perfringens necrotic enteritis toxin B, NetB, was recently proposed as a new key virulence factor for the development of necrotic enteritis (NE) in broilers. The aim of the present study was to investigate the presence of the netB gene and the in vitro production of the NetB toxin in a well characterized collection of 48 C. perfringens Type A isolates, obtained from Danish broiler flocks. The investigation revealed netB gene prevalences of approx. 50% and 60% among isolates from diseased (NE) and healthy flocks, respectively. Only minor nucleotide variations were observed between the isolates in the coding sequence (CDS) of the netB gene, and the promoter region was observed to be completely conserved. However, in vitro NetB production was only observed in 4 out of 14 netB-positive C. perfringens isolates recovered from healthy birds, whereas 12 out of 13 netB-positive isolates from NE birds were shown to produce the NetB toxin. It is therefore proposed that genotype, i.e. presence of the netB gene, in itself is inadequate for predicting virulence of C. perfringens, and future investigations should focus on the bacterial phenotypes; the regulatory mechanisms involved in the expression of NetB, and potentially also other toxins, and its implications for the virulence of individual C. perfringens strains.
Plant Journal | 2014
Anja T. Fuglsang; Astrid Kristensen; Tracey Ann Cuin; Waltraud X. Schulze; Jörgen Persson; Kristina H. Thuesen; Cecilie K. Ytting; Christian B. Oehlenschlæger; Khalid Mahmood; Teis Esben Sondergaard; Sergey Shabala; Michael G. Palmgren
Acidification of the cell wall space outside the plasma membrane is required for plant growth and is the result of proton extrusion by the plasma membrane-localized H+-ATPases. Here we show that the major plasma membrane proton pumps in Arabidopsis, AHA1 and AHA2, interact directly in vitro and in planta with PSY1R, a receptor kinase of the plasma membrane that serves as a receptor for the peptide growth hormone PSY1. The intracellular protein kinase domain of PSY1R phosphorylates AHA2/AHA1 at Thr-881, situated in the autoinhibitory region I of the C-terminal domain. When expressed in a yeast heterologous expression system, the introduction of a negative charge at this position caused pump activation. Application of PSY1 to plant seedlings induced rapid in planta phosphorylation at Thr-881, concomitant with an instantaneous increase in proton efflux from roots. The direct interaction between AHA2 and PSY1R observed might provide a general paradigm for regulation of plasma membrane proton transport by receptor kinases.
Toxicology Letters | 2011
Teis Esben Sondergaard; Frederik Teilfeldt Hansen; Stig Purup; A.K. Nielsen; Eva Cecilie Bonefeld-Jørgensen; Henriette Giese; Jens Sörensen
Fusarin C is a mycotoxin produced by several Fusarium species and has been associated with esophageal cancer due to its carcinogenic effects. Here, we report that fusarin C stimulates growth of the breast cancer cell line MCF-7. This suggests that fusarin C can act as an estrogenic agonist and should be classified as a mycoestrogen. MCF-7 cells were stimulated in the range between 0.1 and 20μM and inhibited when the concentration exceeded 50μM. The toxicity of fusarin C is comparable to other mycoestrogens such as zearalenone, but the chemical structure of fusarin C is very different from other known estrogen agonists. Furthermore, the toxicity of fusarin C was tested in five additional human cell lines Caco 2, U266, PC3, MDA-MB-231 and MCF-10a which were all inhibited when the concentration of fusarin C exceeded 10μM. To the best of our knowledge this is the first report on the mycoestrogenic properties of fusarin C.
Journal of Natural Products | 2014
Jens Sörensen; Teis Esben Sondergaard; Lorenzo Covarelli; Patricia Romans Fuertes; Frederik Teilfeldt Hansen; Rasmus John Normand Frandsen; Wagma Saei; Mie Bech Lukassen; Reinhard Wimmer; Kristian Fog Nielsen; Donald M. Gardiner; Henriette Giese
The closely related species Fusarium graminearum and Fusarium pseudograminearum differ in that each contains a gene cluster with a polyketide synthase (PKS) and a nonribosomal peptide synthetase (NRPS) that is not present in the other species. To identify their products, we deleted PKS6 and NRPS7 in F. graminearum and NRPS32 in F. pseudograminearum. By comparing the secondary metabolite profiles of the strains we identified the resulting product in F. graminearum as fusaristatin A, and as W493 A and B in F. pseudograminearum. These lipopeptides have previously been isolated from unidentified Fusarium species. On the basis of genes in the putative gene clusters we propose a model for biosynthesis where the polyketide product is shuttled to the NPRS via a CoA ligase and a thioesterase in F. pseudograminearum. In F. graminearum the polyketide is proposed to be directly assimilated by the NRPS.