Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Temesgen Samuel is active.

Publication


Featured researches published by Temesgen Samuel.


Journal of Biological Chemistry | 2006

Distinct BIR Domains of cIAP1 Mediate Binding to and Ubiquitination of Tumor Necrosis Factor Receptor-associated Factor 2 and Second Mitochondrial Activator of Caspases

Temesgen Samuel; Kate Welsh; Thomas Lober; Summanuna H. Togo; Juan M. Zapata; John C. Reed

Inhibitor of apoptosis proteins (IAPs) regulate apoptosis primarily by inhibiting caspase-family proteases. However, many IAPs also possess E3 ligase (ubiquitin-protein isopeptide ligase) activities implicated in both caspase-dependent and -independent functions of these proteins. Here, we compared the structural features of cIAP1 responsible for its interactions with two known target proteins, TRAF2 and SMAC. The N-terminal (BIR1) and C-terminal (BIR3) BIR domains of cIAP1 were determined to be necessary and sufficient for binding TRAF2 and SMAC, respectively. Mutational analysis of the BIR1 and BIR3 domains identified critical residues required for TRAF2 and SMAC binding. Using these mutants, cIAP1-mediated ubiquitination of TRAF2 and SMAC in vitro was determined to be correspondingly dependent on intact binding sites on BIR1 and BIR3. Because TRAF2 regulates NF-κB activation, the effects of cIAP1 on TRAF2-mediated induction of NF-κB transcriptional activity were studied using reporter gene assays. Expression of a fragment of cIAP1 encompassing the three BIR domains (but not full-length cIAP1) greatly enhanced TRAF2-induced increases in NF-κB activity, providing a convenient assay for monitoring BIR-dependent effects of cIAP1 on TRAF2 in cells. BIR1 mutants of the BIR1-3 fragment of cIAP1 that failed to bind TRAF2 lost the ability to modulate NF-κB activity, demonstrating a requirement for BIR1-mediated interactions with TRAF2. Altogether, these findings demonstrate the modularity and diversification of BIR domains, showing that a single cIAP can direct its E3 ligase activity toward different substrates and can alter the cellular functions of different protein targets in accordance with differences in the specificity of individual BIR domains.


Nature Genetics | 2007

Birc2 (cIap1) regulates endothelial cell integrity and blood vessel homeostasis.

Massimo M. Santoro; Temesgen Samuel; Tracy Mitchell; John C. Reed; Didier Y. R. Stainier

Integrity of the blood vessel wall is essential for vascular homeostasis and organ function. A dynamic balance between endothelial cell survival and apoptosis contributes to this integrity during vascular development and pathological angiogenesis. The genetic and molecular mechanisms regulating these processes in vivo are still largely unknown. Here, we show that Birc2 (also known as cIap1) is essential for maintaining endothelial cell survival and blood vessel homeostasis during vascular development. Using a forward-genetic approach, we identified a zebrafish null mutant for birc2, which shows severe hemorrhage and vascular regression due to endothelial cell integrity defects and apoptosis. Using genetic and molecular approaches, we show that Birc2 positively regulates the formation of the TNF receptor complex I in endothelial cells, thereby promoting NF-κB activation and maintaining vessel integrity and stabilization. In the absence of Birc2, a caspase-8–dependent apoptotic program takes place that leads to vessel regression. Our findings identify Birc2 and TNF signaling components as critical regulators of vascular integrity and endothelial cell survival, thereby providing an additional target pathway for the control of angiogenesis and blood vessel homeostasis during embryogenesis, regeneration and tumorigenesis.


International Scholarly Research Notices | 2013

The Chemokine CXCL8 in Carcinogenesis and Drug Response

Dominique Gales; Clarence Clark; Upender Manne; Temesgen Samuel

Although the functions of chemokines in the regulation of immune processes have been studied in some detail, the role of these biomolecules in cancer is not fully understood. Chemokines mediate migration of immune cells and other functions related to immunity. They are also involved in oncogenesis and in tumor progression, invasion, and metastasis through mechanisms similar to their roles in immune functions. Various chemokines also promote cell proliferation and resistance to apoptosis of stressed cells. Consequently, chemokines and their receptors present potential therapeutic targets for anticancer drugs. The chemokine CXCL8, also known as interleukin-8 (IL8), is a proinflammatory molecule that has functions within the tumor microenvironment. Due to its potent angiogenic effects and the activity of the chemokine and its receptors in the promotion of invasion and metastasis, CXCL8 and its receptors are now considered as attractive targets for cancer therapy. This review relates the current understanding of the regulation, signaling, and functions of CXCL8 that contribute to tumor growth and metastasis, and of its role in drug response.


Clinical Cancer Research | 2006

The FLIP-Side of Fas Signaling

Marc L. Hyer; Temesgen Samuel; John C. Reed

Fas (CD95/APO-1) is a 45-kDa type I transmembrane protein belonging to the tumor necrosis factor superfamily of receptors ([1][1], [2][2]). Fas was identified in 1989 as a cell death inducer of malignant human cancer and leukemia cell lines ([3][3], [4][4]). Fas contains a classic “death domain


Nutrition and Cancer | 2010

The flavonoid quercetin transiently inhibits the activity of taxol and nocodazole through interference with the cell cycle.

Temesgen Samuel; Khalda Fadlalla; Timothy Turner; Teshome Yehualaeshet

Quercetin is a flavonoid with anticancer properties. In this study, we examined the effects of quercetin on cell cycle, viability, and proliferation of cancer cells, either singly or in combination with the microtubule-targeting drugs taxol and nocodazole. Although quercetin induced cell death in a dose-dependent manner, 12.5–50 μM quercetin inhibited the activity of both taxol and nocodazole to induce G2/M arrest in various cell lines. Quercetin also partially restored drug-induced loss in viability of treated cells for up to 72 h. This antagonism of microtubule-targeting drugs was accompanied by a delay in cell cycle progression and inhibition of the buildup of cyclin-B1 at the microtubule organizing center of treated cells. However, quercetin did not inhibit the microtubule targeting of taxol or nocodazole. Despite the short-term protection of cells by quercetin, colony formation and clonogenicity of HCT116 cells were still suppressed by quercetin or quercetin-taxol combination. The status of cell adherence to growth matrix was critical in determining the sensitivity of HCT116 cells to quercetin. We conclude that although long-term exposure of cancer cells to quercetin may prevent cell proliferation and survival, the interference of quercetin with cell cycle progression diminishes the efficacy of microtubule-targeting drugs to arrest cells at G2/M.


Biotechnic & Histochemistry | 2013

Clinical implications of microRNAs in cancer

Liselle C. Bovell; Balananda Dhurjati Kumar Putcha; Temesgen Samuel; Upender Manne

Abstract MicroRNAs (miRNAs) are endogenously produced non-coding RNAs that serve as micromanagers by negatively regulating gene expression. MiRNAs are implicated in several biological pathways including development of neoplasia. Because altered miRNA expression is implicated in the pathobiology of various cancers, these molecules serve as potential therapeutic targets. Using miRNA mimics to restore levels of aberrantly down-regulated miRNAs or miRNA inhibitors to inactivate over-expressed miRNAs shows promise as the next generation of therapeutic strategies. Manipulation of miRNAs offers an alternative therapeutic approach for chemo- and radiation-resistant tumors. Similarly, miRNA expression patterns can be used for diagnosis and to predict prognosis and efficacy of therapy. We present here an overview of how miRNAs affect cancers, how they may be used as biomarkers, and the clinical implications of miRNAs in cancer.


BMC Cancer | 2014

Variable NF-κB pathway responses in colon cancer cells treated with chemotherapeutic drugs.

Temesgen Samuel; Khalda Fadlalla; Dominique Gales; Balananda Dk Putcha; Upender Manne

BackgroundThe nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB) signaling pathway is activated in cells exposed to various stimuli, including those originating on the cell surface or in the nucleus. Activated NF-κB signaling is thought to enhance cell survival in response to these stimuli, which include chemotherapy and radiation. In the present effort, we determined which anticancer drugs preferentially activate NF-κB in colon cancer cells.MethodsNF-κB reporter cells were established and treated with 5-fluorouracil (5-FU, DNA/RNA damaging), oxaliplatin (DNA damaging), camptothecin (CTP, topoisomerase inhibitor), phleomycin (radiomimetic), or erlotinib (EGFR inhibitor). The activation of NF-κB was assessed by immunofluorescence for p65 translocation, luciferase assays, and downstream targets of NF-κB activation (cIAP2, and Bcl-XL) were evaluated by immunoblotting, by ELISA (CXCL8 and IL-6 in culture supernatants), or by gene expression analysis.ResultsColon cancer cells responded variably to different classes of therapeutic agents, and these agents initiated variable responses among different cell types. CPT activated NF-κB in SW480 colon cancer cells in a dose-dependent manner, but not in HCT116 cells that were either wild-type or deficient for p53. In SW480 colon cancer cells, NF-κB activation by CPT was accompanied by secretion of the cytokine CXCL8, but not by up-regulation of the anti-apoptotic genes, cIAP2 or Bcl-XL. On the contrary, treatment of HCT116 cells with CPT resulted in up-regulation of CXCR2, a receptor for CXCL8, without an increase in cytokine levels. In SW480 cells, NF-κB reporter activity, but not cytokine secretion, was inhibited by SM-7368, an NF-κB inhibitor.ConclusionThe results show that, in response to cancer therapeutic agents, NF-κB activation varies with the cellular make up and that drug-induced NF-κB activation may be functionally uncoupled from anti-apoptotic outcomes found for other stimuli. Some cancer cells in a heterogeneous tumor tissue may, under therapeutic pressure, release soluble factors that have paracrine activity on neighboring cells that express the cognate receptors.


Journal of Food Protection | 2012

Novel genomic tools for specific and real-time detection of biothreat and frequently encountered foodborne pathogens.

Abdela Woubit; Teshome Yehualaeshet; Tsegaye Habtemariam; Temesgen Samuel

The bacterial genera Escherichia, Salmonella, Shigella, Vibrio, Yersinia, and Francisella include important food safety and biothreat agents. By extensive mining of the whole genome and protein databases of diverse, closely and distantly related bacterial species and strains, we have identified novel genome regions, which we utilized to develop a rapid detection platform for these pathogens. The specific genomic targets we have identified to design the primers in Francisella tularensis subsp. tularensis, F. tularensis subsp. novicida, Shigella dysenteriae, Salmonella enterica serovar Typhimurium, Vibrio cholerae, Yersinia pestis, and Yersinia pseudotuberculosis contained either known genes or putative proteins. Primer sets were designed from the target regions for use in real-time PCR assays to detect specific biothreat pathogens at species or strain levels. The primer sets were first tested by in silico PCR against whole-genome sequences of different species, subspecies, or strains and then by in vitro PCR against genomic DNA preparations from 23 strains representing six biothreat agents (Escherichia coli O157:H7 strain EDL 933, Shigella dysenteriae, S. enterica serovar Typhi, F. tularensis subsp. tularensis, V. cholerae, and Y. pestis) and six foodborne pathogens (Salmonella Typhimurium, Salmonella Saintpaul, Shigella sonnei, F. tularensis subsp. novicida, Vibrio parahaemolyticus, and Y. pseudotuberculosis). Each pathogen was specifically identifiable at the genus and species levels. Sensitivity assays performed with purified DNA showed the lowest detection limit of 128 fg of DNA/μl for F. tularensis subsp. tularensis. A preliminary test to detect Shigella organisms in a milk matrix also enabled the detection of 6 to 60 CFU/ml. These new tools could ultimately be used to develop platforms to simultaneously detect these pathogens.


PLOS ONE | 2012

Prognostic Significance and Gene Expression Profiles of p53 Mutations in Microsatellite-Stable Stage III Colorectal Adenocarcinomas

Venkat R. Katkoori; Chandrakumar Shanmugam; Xu Jia; Swaroop P. Vitta; Meenakshi Sthanam; Tom Callens; Ludwine Messiaen; Dongquan Chen; Bin Zhang; Harvey L. Bumpers; Temesgen Samuel; Upender Manne

Although the prognostic value of p53 abnormalities in Stage III microsatellite stable (MSS) colorectal cancers (CRCs) is known, the gene expression profiles specific to the p53 status in the MSS background are not known. Therefore, the current investigation has focused on identification and validation of the gene expression profiles associated with p53 mutant phenotypes in MSS Stage III CRCs. Genomic DNA extracted from 135 formalin-fixed paraffin-embedded tissues, was analyzed for microsatellite instability (MSI) and p53 mutations. Further, mRNA samples extracted from five p53-mutant and five p53-wild-type MSS-CRC snap-frozen tissues were profiled for differential gene expression by Affymetrix Human Genome U133 Plus 2.0 arrays. Differentially expressed genes were further validated by the high-throughput quantitative nuclease protection assay (qNPA), and confirmed by quantitative real-time polymerase chain reaction (qRT-PCR) and by immunohistochemistry (IHC). Survival rates were estimated by Kaplan-Meier and Cox regression analyses. A higher incidence of p53 mutations was found in MSS (58%) than in MSI (30%) phenotypes. Both univariate (log-rank, P = 0.025) and multivariate (hazard ratio, 2.52; 95% confidence interval, 1.25–5.08) analyses have demonstrated that patients with MSS-p53 mutant phenotypes had poor CRC-specific survival when compared to MSS-p53 wild-type phenotypes. Gene expression analyses identified 84 differentially expressed genes. Of 49 down-regulated genes, LPAR6, PDLIM3, and PLAT, and, of 35 up-regulated genes, TRIM29, FUT3, IQGAP3, and SLC6A8 were confirmed by qNPA, qRT-PCR, and IHC platforms. p53 mutations are associated with poor survival of patients with Stage III MSS CRCs and p53-mutant and wild-type phenotypes have distinct gene expression profiles that might be helpful in identifying aggressive subsets.


Journal of Agricultural and Food Chemistry | 2017

Nanoengineered Eggshell–Silver Tailored Copolyester Polymer Blend Film with Antimicrobial Properties

Boniface Tiimob; Gregory Mwinyelle; Woubit Abdela; Temesgen Samuel; Shaik Jeelani; Vijaya K. Rangari

In this study, the reinforcement effect of different proportions of eggshell/silver (ES-Ag) nanomaterial on the structural and antimicrobial properties of 70/30 poly(butylene-co-adipate terephthalate)/polylactic acid (PBAT/PLA) immiscible blends was investigated. The ES-Ag was synthesized using a single step ball milling process and characterized with X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), and transmission electron microscopy (TEM). These results confirmed the existence of silver nanoparticles (Ag NPs) in the interstitial spaces of the eggshell particles. The thin films in this study were prepared using hot melt extrusion and 3D printing for mechanical and antimicrobial testing, respectively. These films were also characterized by thermogravimetric analysis (TGA), differential scanning calorimetry (DSC), scanning electron microscopy (SEM), XRD, tensile testing, and antimicrobial analysis. It was found that the incorporation of ES-Ag (0.5-2.0% content) compromised the tensile properties of the blend, due to poor interaction between the matrix and the ES-Ag in the ternary systems, but thermal analysis revealed improvement in the onset of degradation temperature and char yield at 500 °C. Though film toughness was better than that of PLA, the strength was lower, yet synergistic to those of PBAT and PLA. In general, the PBAT/PLA/ES-Ag ternary system had properties intermediate to those of the pure polymers. In vitro assessment of the antimicrobial activity of these films conducted on Listeria monocytogenes and Salmonella Enteritidis bacteria revealed that the blend composite films possessed bacteriostatic effects, due to the immobilized ES-Ag nanomaterials in the blend matrix. Atomic absorption spectroscopy (AAS) analysis of water and food samples exposed to the films showed that Ag NPs were not released in distilled water and chicken breast after 72 and 168 h, respectively.

Collaboration


Dive into the Temesgen Samuel's collaboration.

Top Co-Authors

Avatar

Upender Manne

University of Alabama at Birmingham

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Venkat R. Katkoori

University of Alabama at Birmingham

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Chandrakumar Shanmugam

University of Alabama at Birmingham

View shared research outputs
Researchain Logo
Decentralizing Knowledge