Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Tendai Mhlanga-Mutangadura is active.

Publication


Featured researches published by Tendai Mhlanga-Mutangadura.


Infection and Immunity | 2005

Characterization of Genetic and Phenotypic Diversity of Invasive Nontypeable Haemophilus influenzae

Alice L. Erwin; Kevin L. Nelson; Tendai Mhlanga-Mutangadura; Paul J. Bonthuis; Jennifer L. Geelhood; Gregory Morlin; William C. T. Unrath; José Campos; Derrick W. Crook; Monica M. Farley; Frederick W. Henderson; Richard F. Jacobs; Kathrin Mühlemann; Sarah W. Satola; Loek van Alphen; Miriam Golomb; Arnold L. Smith

ABSTRACT The ability of unencapsulated (nontypeable) Haemophilus influenzae (NTHi) to cause systemic disease in healthy children has been recognized only in the past decade. To determine the extent of similarity among invasive nontypeable isolates, we compared strain R2866 with 16 additional NTHi isolates from blood and spinal fluid, 17 nasopharyngeal or throat isolates from healthy children, and 19 isolates from middle ear aspirates. The strains were evaluated for the presence of several genetic loci that affect bacterial surface structures and for biochemical reactions that are known to differ among H. influenzae strains. Eight strains, including four blood isolates, shared several properties with R2866: they were biotype V (indole and ornithine decarboxylase positive, urease negative), contained sequence from the adhesin gene hia, and lacked a genetic island flanked by the infA and ksgA genes. Multilocus sequence typing showed that most biotype V isolates belonged to the same phylogenetic cluster as strain R2866. When present, the infA-ksgA island contains lipopolysaccharide biosynthetic genes, either lic2B and lic2C or homologs of the losA and losB genes described for Haemophilus ducreyi. The island was found in most nasopharyngeal and otitis isolates but was absent from 40% of invasive isolates. Overall, the 33 hmw-negative isolates were much more likely than hmw-containing isolates to have tryptophanase, ornithine decarboxylase, or lysine decarboxylase activity or to contain the hif genes. We conclude (i) that invasive isolates are genetically and phenotypically diverse and (ii) that certain genetic loci of NTHi are frequently found in association among NTHi strains.


Journal of Veterinary Internal Medicine | 2014

A homozygous KCNJ10 mutation in Jack Russell Terriers and related breeds with spinocerebellar ataxia with myokymia, seizures, or both.

D. Gilliam; Dennis P. O'Brien; Joan R. Coates; Gary S. Johnson; Gayle C. Johnson; Tendai Mhlanga-Mutangadura; Liz Hansen; Jeremy F. Taylor; Robert D. Schnabel

Background Juvenile‐onset spinocerebellar ataxia has been recognized in Jack Russell Terriers and related Russell group terriers (RGTs) for over 40 years. Ataxia occurs with varying combinations of myokymia, seizures, and other signs of neurologic disease. More than 1 form of the disease has been suspected. Hypothesis/Objectives The objective was to identify the mutation causing the spinocerebellar ataxia associated with myokymia, seizures, or both and distinguish the phenotype from other ataxias in the RGTs. Animals DNA samples from 16 RGTs with spinocerebellar ataxia beginning from 2 to 12 months of age, 640 control RGTs, and 383 dogs from 144 other breeds along with the medical records of affected dogs were studied. Methods This case‐control study compared the frequencies of a KCNJ10 allele in RGTs with spinocerebellar ataxia versus control RGTs. This allele was identified in a whole‐genome sequence of a single RGT with spinocerebellar ataxia and myokymia by comparison to whole‐genome sequences from 81 other canids that were normal or had other diseases. Results A missense mutation in the gene coding for the inwardly rectifying potassium channel Kir4.1 (KCNJ10:c.627C>G) was significantly (P < .001) associated with the disease. Dogs homozygous for the mutant allele all had spinocerebellar ataxia with varying combinations of myokymia and seizures. Conclusions and Clinical Importance Identification of the KCNJ10 mutation in dogs with spinocerebellar ataxia with myokymia, seizures, or both clarifies the multiple forms of ataxia seen in these breeds and provides a DNA test to identify carriers.


Molecular Genetics and Metabolism | 2014

A CLN8 nonsense mutation in the whole genome sequence of a mixed breed dog with neuronal ceroid lipofuscinosis and Australian Shepherd ancestry

Juyuan Guo; Gary S. Johnson; Holly A. Brown; Michele Provencher; Ronaldo C. da Costa; Tendai Mhlanga-Mutangadura; Jeremy F. Taylor; Robert D. Schnabel; Dennis P. O'Brien; Martin L. Katz

The neuronal ceroid lipofuscinoses (NCLs) are hereditary neurodegenerative diseases characterized by seizures and progressive cognitive decline, motor impairment, and vision loss accompanied by accumulation of autofluorescent lysosomal storage bodies in the central nervous system and elsewhere in the body. Mutations in at least 14 genes underlie the various forms of NCL. One of these genes, CLN8, encodes an intrinsic membrane protein of unknown function that appears to be localized primarily to the endoplasmic reticulum. Most CLN8 mutations in people result in a form of NCL with a late infantile onset and relatively rapid progression. A mixed breed dog with Australian Shepherd and Blue Heeler ancestry developed neurological signs characteristic of NCL starting at about 8months of age. The signs became progressively worse and the dog was euthanized at 21months of age due to seizures of increasing frequency and severity. Postmortem examination of the brain and retinas identified massive accumulations of intracellular autofluorescent inclusions characteristic of the NCLs. Whole genome sequencing of DNA from this dog identified a CLN8:c.585G>A transition that predicts a CLN8:p.Trp195* nonsense mutation. This mutation appears to be rare in both ancestral breeds. All of our 133 archived DNA samples from Blue Heelers, and 1481 of our 1488 archived Australian Shepherd DNA samples tested homozygous for the reference CLN8:c.585G allele. Four of the Australian Shepherd samples tested heterozygous and 3 tested homozygous for the mutant CLN8:c.585A allele. All 3 dogs homozygous for the A allele exhibited clinical signs of NCL and in 2 of them NCL was confirmed by postmortem evaluation of brain tissue. The occurrence of confirmed NCL in 3 of 4 CLN8:c.585A homozygous dogs, plus the occurrence of clinical signs consistent with NCL in the fourth homozygote strongly suggests that this rare truncating mutation causes NCL. Identification of this NCL-causing mutation provides the opportunity for identifying dogs that can be used to establish a canine model for the CLN8 disease (also known as late infantile variant or late infantile CLN8 disease).


Molecular Genetics and Metabolism | 2015

Golden Retriever dogs with neuronal ceroid lipofuscinosis have a two-base-pair deletion and frameshift in CLN5.

D. Gilliam; A. Kolicheski; Gary S. Johnson; Tendai Mhlanga-Mutangadura; Jeremy F. Taylor; Robert D. Schnabel; Martin L. Katz

We studied a recessive, progressive neurodegenerative disease occurring in Golden Retriever siblings with an onset of signs at 15 months of age. As the disease progressed these signs included ataxia, anxiety, pacing and circling, tremors, aggression, visual impairment and localized and generalized seizures. A whole genome sequence, generated with DNA from one affected dog, contained a plausibly causal homozygous mutation: CLN5:c.934_935delAG. This mutation was predicted to produce a frameshift and premature termination codon and encode a protein variant, CLN5:p.E312Vfs*6, which would lack 39 C-terminal amino acids. Eighteen DNA samples from the Golden Retriever family members were genotyped at CLN5:c.934_935delAG. Three clinically affected dogs were homozygous for the deletion allele; whereas, the clinically normal family members were either heterozygotes (n = 11) or homozygous for the reference allele (n = 4). Among archived Golden Retrievers DNA samples with incomplete clinical records that were also genotyped at the CLN5:c.934_935delAG variant, 1053 of 1062 were homozygous for the reference allele, 8 were heterozygotes and one was a deletion-allele homozygote. When contacted, the owner of this homozygote indicated that their dog had been euthanized because of a neurologic disease that progressed similarly to that of the affected Golden Retriever siblings. We have collected and stored semen from a heterozygous Golden Retriever, thereby preserving an opportunity for us or others to establish a colony of CLN5-deficient dogs.


Journal of Veterinary Internal Medicine | 2016

Australian Cattle Dogs with Neuronal Ceroid Lipofuscinosis are Homozygous for a CLN5 Nonsense Mutation Previously Identified in Border Collies

A. Kolicheski; Gary S. Johnson; Dennis P. O'Brien; Tendai Mhlanga-Mutangadura; D. Gilliam; Juyuan Guo; T.D. Anderson-Sieg; Robert D. Schnabel; Jeremy F. Taylor; A. Lebowitz; B. Swanson; D. Hicks; Z.E. Niman; F.A. Wininger; M.C. Carpentier; Martin L. Katz

Background Neuronal ceroid lipofuscinosis (NCL), a fatal neurodegenerative disease, has been diagnosed in young adult Australian Cattle Dogs. Objective Characterize the Australian Cattle Dog form of NCL and determine its molecular genetic cause. Animals Tissues from 4 Australian Cattle Dogs with NCL‐like signs and buccal swabs from both parents of a fifth affected breed member. Archived DNA samples from 712 individual dogs were genotyped. Methods Tissues were examined by fluorescence, electron, and immunohistochemical microscopy. A whole‐genome sequence was generated for 1 affected dog. A TaqMan allelic discrimination assay was used for genotyping. Results The accumulation of autofluorescent cytoplasmic storage material with characteristic ultrastructure in tissues from the 4 affected dogs supported a diagnosis of NCL. The whole‐genome sequence contained a homozygous nonsense mutation: CLN5:c.619C>T. All 4 DNA samples from clinically affected dogs tested homozygous for the variant allele. Both parents of the fifth affected dog were heterozygotes. Archived DNA samples from 346 Australian Cattle Dogs, 188 Border Collies, and 177 dogs of other breeds were homozygous for the reference allele. One archived Australian Cattle Dog sample was from a heterozygote. Conclusions and Clinical Importance The homozygous CLN5 nonsense is almost certainly causal because the same mutation previously had been reported to cause a similar form of NCL in Border Collies. Identification of the molecular genetic cause of Australian Cattle Dog NCL will allow the use of DNA tests to confirm the diagnosis of NCL in this breed.


Genome Announcements | 2014

Draft Genome Sequence of Moraxella bovoculi Strain 237T (ATCC BAA-1259T) Isolated from a Calf with Infectious Bovine Keratoconjunctivitis

Michael J. Calcutt; Mark F. Foecking; Neal T. Martin; Tendai Mhlanga-Mutangadura; Thomas J. Reilly

ABSTRACT Moraxella bovoculi is a recently identified species, recovered from the bovine eye, which is under investigation as an etiological agent of infectious bovine keratoconjunctivitis. A draft genome sequence of the Moraxella bovoculi type strain 237T has been determined to identify features that may be important during host colonization.


Neurobiology of Disease | 2016

A mutation in the Warburg syndrome gene, RAB3GAP1, causes a similar syndrome with polyneuropathy and neuronal vacuolation in Black Russian Terrier dogs.

Tendai Mhlanga-Mutangadura; Gary S. Johnson; Robert D. Schnabel; Jeremy F. Taylor; Gayle C. Johnson; Martin L. Katz; G. Diane Shelton; Teresa E. Lever; Elizabeth A. Giuliano; Nicolas Granger; Jeremy Shomper; Dennis P. O'Brien

An autosomal recessive disease of Black Russian Terriers was previously described as a juvenile-onset, laryngeal paralysis and polyneuropathy similar to Charcot Marie Tooth disease in humans. We found that in addition to an axonal neuropathy, affected dogs exhibit microphthalmia, cataracts, and miotic pupils. On histopathology, affected dogs exhibit a spongiform encephalopathy characterized by accumulations of abnormal, membrane-bound vacuoles of various sizes in neuronal cell bodies, axons and adrenal cells. DNA from an individual dog with this polyneuropathy with ocular abnormalities and neuronal vacuolation (POANV) was used to generate a whole genome sequence which contained a homozygous RAB3GAP1:c.743delC mutation that was absent from 73 control canine whole genome sequences. An additional 12 Black Russian Terriers with POANV were RAB3GAP1:c.743delC homozygotes. DNA samples from 249 Black Russian Terriers with no known signs of POANV were either heterozygotes or homozygous for the reference allele. Mutations in human RAB3GAP1 cause Warburg micro syndrome (WARBM), a severe developmental disorder characterized by abnormalities of the eye, genitals and nervous system including a predominantly axonal peripheral neuropathy. RAB3GAP1 encodes the catalytic subunit of a GTPase activator protein and guanine exchange factor for Rab3 and Rab18 respectively. Rab proteins are involved in membrane trafficking in the endoplasmic reticulum, axonal transport, autophagy and synaptic transmission. The neuronal vacuolation and membranous inclusions and vacuoles in axons seen in this canine disorder likely reflect alterations of these processes. Thus, this canine disease could serve as a model for WARBM and provide insight into its pathogenesis and treatment.


Molecular Genetics and Metabolism | 2016

Neuronal ceroid lipofuscinosis associated with an MFSD8 mutation in Chihuahuas

Akanksha Ashwini; Antonio D'Angelo; Osamu Yamato; Cristina Giordano; Giulia Cagnotti; Tom Harcourt-Brown; Tendai Mhlanga-Mutangadura; Juyuan Guo; Gary S. Johnson; Martin L. Katz

The neuronal ceroid lipofuscinoses (NCLs) are hereditary neurodegenerative disorders characterized by progressive declines in neurological functions, seizures, and premature death. NCLs result from mutations in at least 13 different genes. Canine versions of the NCLs can serve as important models in developing effective therapeutic interventions for these diseases. NCLs have been described in a number of dog breeds, including Chihuahuas. Studies were undertaken to further characterize the pathology of Chihuahua NCL and to verify its molecular genetic basis. Four unrelated client owned Chihuahuas from Japan, Italy and England that exhibited progressive neurological signs consistent with a diagnosis of NCL underwent neurological examinations. Brain and in some cases also retinal and heart tissues were examined postmortem for the presence of lysosomal storage bodies characteristic of NCL. The affected dogs exhibited massive accumulation of autofluorescent lysosomal storage bodies in the brain, retina and heart accompanied by brain atrophy and retinal degeneration. The dogs were screened for known canine NCL mutations previously reported in a variety of dog breeds. All 4 dogs were homozygous for the MFSD8 single base pair deletion (MFSD8:c.843delT) previously associated with NCL in a Chinese Crested dog and in 2 affected littermate Chihuahuas from Scotland. The dogs were all homozygous for the normal alleles at the other genetic loci known to cause different forms of canine NCL. The MFSD8:c.843delT mutation was not present in 57 Chihuahuas that were either clinically normal or suffered from unrelated diseases or in 1761 unaffected dogs representing 186 other breeds. Based on these data it is almost certain that the MFSD8:c.843delT mutation is the cause of NCL in Chihuahuas. Because the disorder occurred in widely separated geographic locations or in unrelated dogs from the same country, it is likely that the mutant allele is widespread among Chihuahuas. Genetic testing for this mutation in other Chihuahuas is therefore likely to identify intact dogs with the mutant allele that could be used to establish a research colony that could be used to test potential therapeutic interventions for the corresponding human disease.


Journal of Veterinary Internal Medicine | 2017

GM2 Gangliosidosis in Shiba Inu Dogs with an In-Frame Deletion in HEXB

A. Kolicheski; Gary S. Johnson; N.A. Villani; Dennis P. O'Brien; Tendai Mhlanga-Mutangadura; David A. Wenger; K. Mikoloski; J.S. Eagleson; Jeremy F. Taylor; Robert D. Schnabel; Martin L. Katz

Consistent with a tentative diagnosis of neuronal ceroid lipofuscinosis (NCL), autofluorescent cytoplasmic storage bodies were found in neurons from the brains of 2 related Shiba Inu dogs with a young‐adult onset, progressive neurodegenerative disease. Unexpectedly, no potentially causal NCL‐related variants were identified in a whole‐genome sequence generated with DNA from 1 of the affected dogs. Instead, the whole‐genome sequence contained a homozygous 3 base pair (bp) deletion in a coding region of HEXB. The other affected dog also was homozygous for this 3‐bp deletion. Mutations in the human HEXB ortholog cause Sandhoff disease, a type of GM2 gangliosidosis. Thin‐layer chromatography confirmed that GM2 ganglioside had accumulated in an affected Shiba Inu brain. Enzymatic analysis confirmed that the GM2 gangliosidosis resulted from a deficiency in the HEXB encoded protein and not from a deficiency in products from HEXA or GM2A, which are known alternative causes of GM2 gangliosidosis. We conclude that the homozygous 3‐bp deletion in HEXB is the likely cause of the Shiba Inu neurodegenerative disease and that whole‐genome sequencing can lead to the early identification of potentially disease‐causing DNA variants thereby refocusing subsequent diagnostic analyses toward confirming or refuting candidate variant causality.


Journal of Veterinary Internal Medicine | 2017

Homozygous PPT1 Splice Donor Mutation in a Cane Corso Dog With Neuronal Ceroid Lipofuscinosis

A. Kolicheski; H.L. Barnes Heller; S. Arnold; Robert D. Schnabel; Jeremy F. Taylor; C.A. Knox; Tendai Mhlanga-Mutangadura; Dennis P. O'Brien; Gary S. Johnson; J. Dreyfus; Martin L. Katz

A 10‐month‐old spayed female Cane Corso dog was evaluated after a 2‐month history of progressive blindness, ataxia, and lethargy. Neurologic examination abnormalities indicated a multifocal lesion with primarily cerebral and cerebellar signs. Clinical worsening resulted in humane euthanasia. On necropsy, there was marked astrogliosis throughout white matter tracts of the cerebrum, most prominently in the corpus callosum. In the cerebral cortex and midbrain, most neurons contained large amounts of autofluorescent storage material in the perinuclear area of the cells. Cerebellar storage material was present in the Purkinje cells, granular cell layer, and perinuclear regions of neurons in the deep nuclei. Neuronal ceroid lipofuscinosis (NCL) was diagnosed. Whole genome sequencing identified a PPT1c.124 + 1G>A splice donor mutation. This nonreference assembly allele was homozygous in the affected dog, has not previously been reported in dbSNP, and was absent from the whole genome sequences of 45 control dogs and 31 unaffected Cane Corsos. Our findings indicate a novel mutation causing the CLN1 form of NCL in a previously unreported dog breed. A canine model for CLN1 disease could provide an opportunity for therapeutic advancement, benefiting both humans and dogs with this disorder.

Collaboration


Dive into the Tendai Mhlanga-Mutangadura's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Juyuan Guo

University of Missouri

View shared research outputs
Top Co-Authors

Avatar

D. Gilliam

University of Missouri

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge