Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Teng-Kuang Yeh is active.

Publication


Featured researches published by Teng-Kuang Yeh.


Environmental Health Perspectives | 2007

Persistent Tissue Kinetics and Redistribution of Nanoparticles, Quantum Dot 705, in Mice: ICP-MS Quantitative Assessment

Raymond S. H. Yang; Louis W. Chang; Jui-Pin Wu; Ming-Hsien Tsai; Hsiu-Jen Wang; Yu-Chun Kuo; Teng-Kuang Yeh; Chung Shi Yang; Pinpin Lin

Background Quantum dots (QDs) are autofluorescent semiconductor nanocrystals that can be used for in vivo biomedical imaging. However, we know little about their in vivo disposition and health consequences. Objectives We assessed the tissue disposition and pharmacokinetics of QD705 in mice. Methods We determined quantitatively the blood and tissue kinetics of QD705 in mice after single intravenous (iv) injection at the dose of 40 pmol for up to 28 days. Inductively coupled plasma–mass spectrometry (ICP-MS) measurement of cadmium was the primary method of quantification of QD705. Fluorescence light microscopy revealed the localization of QD705 in tissues. Results Plasma half-life of QD705 in mice was short (18.5 hr), but ICP-MS analyses revealed QD705 persisted and even continued to increase in the spleen, liver, and kidney 28 days after an iv dose. Considerable time-dependent redistribution from body mass to liver and kidney was apparent between 1 and 28 days postdosing. The recoveries at both time points were near 100%; all QD705s reside in the body. Neither fecal nor urinary excretion of QD705 was detected appreciably in 28 days postdosing. Fluorescence microscopy demonstrated deposition of QD705 in the liver, spleen, and kidneys. Conclusion Judging from the continued increase in the liver (29–42% of the administered dose), kidney (1.5–9.2%), and spleen (4.8–5.2%) between 1 and 28 days without any appreciable excretion, QD705 has a very long half-life, potentially weeks or even months, in the body and its health consequences deserve serious consideration.


Journal of Medicinal Chemistry | 2010

Design and Synthesis of Tetrahydropyridothieno[2,3-d]pyrimidine Scaffold Based Epidermal Growth Factor Receptor (EGFR) Kinase Inhibitors: The Role of Side Chain Chirality and Michael Acceptor Group for Maximal Potency

Chia-Hsien Wu; Mohane Selvaraj Coumar; Chang-Ying Chu; Wen-Hsing Lin; Yi-Rong Chen; Chiung-Tong Chen; Hui-Yi Shiao; Shaik Rafi; Sing-Yi Wang; Hui Hsu; Chun-Hwa Chen; Chun-Yu Chang; Teng-Yuan Chang; Tzu-Wen Lien; Ming-Yu Fang; Kai-Chia Yeh; Ching-Ping Chen; Teng-Kuang Yeh; Su-Huei Hsieh; John T.-A. Hsu; Chun-Chen Liao; Yu-Sheng Chao; Hsing-Pang Hsieh

HTS hit 7 was modified through hybrid design strategy to introduce a chiral side chain followed by introduction of Michael acceptor group to obtain potent EGFR kinase inhibitors 11 and 19. Both 11 and 19 showed over 3 orders of magnitude enhanced HCC827 antiproliferative activity compared to HTS hit 7 and also inhibited gefitinib-resistant double mutant (DM, T790M/L858R) EGFR kinase at nanomolar concentration. Moreover, treatment with 19 shrinked tumor in nude mice xenograft model.


Journal of Medicinal Chemistry | 2011

Discovery of Novel N-β-d-Xylosylindole Derivatives as Sodium-Dependent Glucose Cotransporter 2 (SGLT2) Inhibitors for the Management of Hyperglycemia in Diabetes

Chun-Hsu Yao; Jen-Shin Song; Chiung-Tong Chen; Teng-Kuang Yeh; Ming-Shiu Hung; Chih-Chun Chang; Yu-Wei Liu; Mao-Chia Yuan; Chieh-Jui Hsieh; Chung-Yu Huang; Min-Hsien Wang; Ching-Hui Chiu; Tsung-Chih Hsieh; Szu-Huei Wu; Wenchi Hsiao; Kuang-Feng Chu; Chi-Hui Tsai; Yu-Sheng Chao; Jinq-Chyi Lee

A novel series of N-linked β-D-xylosides were synthesized and evaluated for inhibitory activity against sodium-dependent glucose cotransporter 2 (SGLT2) in a cell-based assay. Of these, the 4-chloro-3-(4-cyclopropylbenzyl)-1-(β-D-xylopyranosyl)-1H-indole 19m was found to be the most potent inhibitor, with an EC(50) value similar to that of the natural SGLT2 inhibitor phlorizin. Further studies in Sprague-Dawley (SD) rats indicated that 19m significantly increased urine glucose excretion in a dose-dependent manner with oral administration. The antihyperglycemic effect of 19m was also observed in streptozotocin (STZ) induced diabetic SD rats. These results described here are a good starting point for further investigations into N-glycoside SGLT2 inhibitors.


Journal of Medicinal Chemistry | 2009

Discovery of 2-[5-(4-chloro-phenyl)-1-(2,4-dichloro-phenyl)-4-ethyl-1H-pyrazol-3-yl]-1,5,5-trimethyl-1,5-dihydro-imidazol-4-thione (BPR-890) via an active metabolite. A novel, potent and selective cannabinoid-1 receptor inverse agonist with high antiobesity efficacy in DIO mice.

Chien-Huang Wu; Ming-Shiu Hung; Jen-Shin Song; Teng-Kuang Yeh; Ming-Chen Chou; Cheng-Ming Chu; Jiing-Jyh Jan; Min-Tsang Hsieh; Shi-Liang Tseng; Chun-Ping Chang; Wan-Ping Hsieh; Yinchiu Lin; Yen-Nan Yeh; Wan-Ling Chung; Chun-Wei Kuo; Chin-Yu Lin; Horng-Shing Shy; Yu-Sheng Chao; Kak-Shan Shia

By using the active metabolite 5 as an initial template, further structural modifications led to the identification of the titled compound 24 (BPR-890) as a highly potent CB1 inverse agonist possessing an excellent CB2/1 selectivity and remarkable in vivo efficacy in diet-induced obese mice with a minimum effective dose as low as 0.03 mg/kg (po qd) at the end of the 30-day chronic study. Current SAR studies along with those of many existing rimonabant-mimicking molecules imply that around the pyrazole C3-position, a rigid and deep binding pocket should exist for CB1 receptor. In addition, relative to the conventional carboxamide carbonyl, serving as a key hydrogen-bond acceptor during ligand-CB1 receptor interaction, the corresponding polarizable thione carbonyl might play a more critical role in stabilizing the Asp366-Lys192 salt bridge in the proposed CB1-receptor homology model and inducing significant selectivity for CB1R over CB2R.


International Journal of Pharmaceutics | 2008

Enhanced oral bioavailability of paclitaxel by D-α-tocopheryl polyethylene glycol 400 succinate in mice

Pei-Yin Ho; Teng-Kuang Yeh; Hsien-Tsung Yao; Heng-Liang Lin; Hsin-Yi Wu; Yu-Kang Lo; Yi-Wei Chang; Tien-Hui Chiang; Stephen H.W. Wu; Yu-Sheng Chao; Chiung-Tong Chen

Paclitaxel is widely used to treat several types of solid tumors. The commercially available paclitaxel formulation contains Cremophor/ethanol as solubilizers. This study evaluated the effects of D-alpha-tocopheryl polyethylene glycol 400 succinate (TPGS 400) on the oral absorption of paclitaxel in mice. Mice were given an intravenous (18mg/kg) or oral (100mg/kg) dose of paclitaxel solubilized in Cremophor/ethanol or in TPGS 400/ethanol formulations. Paclitaxel plasma concentrations and pharmacokinetic parameters were determined. The maximal plasma concentrations of paclitaxel after an oral dose were 1.77+/-0.17 and 3.39+/-0.49microg/ml for Cremophor/ethanol and TPGS 400/ethanol formulations, respectively, with a similar time at 40-47min to reach the maximal plasma concentrations. The oral bioavailability of paclitaxel in TPGS 400/ethanol (7.8%) was 3-fold higher than that in Cremophor/ethanol (2.5%). On the other hand, the plasma pharmacokinetic profiles of intravenous paclitaxel demonstrated a superimposition for the two formulations. Furthermore, TPGS 400 concentration-dependently increased the intracellular retention of Rhodamine 123 in Caco-2 cells and enhanced paclitaxel permeability in monolayer Caco-2 cultures. TPGS 400 at concentrations up to 1mM did not inhibit testosterone 6beta-hydroxylase, a cytochrome P450 isozyme 3A in liver microsomes metabolizing paclitaxel. Our results indicated that TPGS 400 enhances the oral bioavailability of paclitaxel in mice and the enhancement may result from an increase in intestinal absorption of paclitaxel.


Food and Chemical Toxicology | 2009

Effect of taurine supplementation on cytochrome P450 2E1 and oxidative stress in the liver and kidneys of rats with streptozotocin-induced diabetes

Hsien-Tsung Yao; PinPin Lin; Yi-Wei Chang; Chiung-Tong Chen; Meng-Tsan Chiang; Ling Chang; Yu-Chun Kuo; Hui-Ti Tsai; Teng-Kuang Yeh

To investigate whether diabetes-induced alterations of CYP2E1 and oxidative stress can be modulated by dietary taurine supplementation, male Wistar rats were divided into non-diabetic, diabetic, and diabetic taurine-supplemented groups (administered at 2% in the drinking water). Increased levels of CYP2E1-catalyzed p-nitrophenol hydroxylation were found in liver and kidney microsomes of rats with STZ-induced diabetes compared to those of non-diabetic control rats. Immunoblot and RT-PCR analyses of CYP2E1 protein and mRNA levels in the liver and kidneys showed the same trend as with enzyme activities. Taurine supplementation significantly decreased the enzyme activity and expression (protein and mRNA) of CYP2E1 in diabetic rat kidneys. Plasma beta-hydroxybutyrate concentration was significantly reduced in taurine-treated diabetic rats. The induction of heme oxygenase-1 mRNA was suppressed by taurine treatment in diabetic rat kidneys. An increase in reduced glutathione (GSH) and a higher ratio of reduced to oxidized glutathione (GSH/GSSG) together with lower values of thiobarbituric acid-reactive substances (TBARS) were observed in the kidneys of taurine-treated diabetic rats. However, taurine supplementation caused only a slight or insignificant effect on these alternations in the liver of diabetic rats. Our results show dietary taurine may reduce CYP2E1 expression and activity, and oxidative stress in kidneys of diabetic rats.


Journal of Medicinal Chemistry | 2012

Synthesis and Biological Evaluation of Tylophorine-Derived Dibenzoquinolines as Orally Active Agents-Exploration of the Role of Tylophorine E Ring on Biological Activity.

Yue-Zhi Lee; Cheng-Wei Yang; Hsing-Yu Hsu; Ya-Qi Qiu; Teng-Kuang Yeh; Hsin-Yu Chang; Yu-Sheng Chao; Shiow-Ju Lee

A series of novel tylophorine-derived dibenzoquinolines has been synthesized and their biological activity evaluated. Three assays were conducted: inhibition of cancer cell proliferation, inhibition of TGEV replication for anticoronavirus activity, and suppression of nitric oxide production in RAW264.7 cells (a measure of anti-inflammation). The most potent compound from these assays, dibenzoquinoline 33b, showed improved solubility compared to tylophorine 9a, in vivo efficacies in a lung A549 xenografted tumor mouse model and a murine paw edema model, good bioavailability, and no significant neurotoxicity (as tested by a rota-rod test for motor coordination). This is the first study to explore in detail the role of the tylophorine E ring on biological activity and very strongly suggests that tylophorine-derived dibenzoquinolines merit further development into orally active agents.


Nanotoxicology | 2011

Comparative tissue distributions of cadmium chloride and cadmium-based quantum dot 705 in mice: Safety implications and applications

Teng-Kuang Yeh; Jui-Pin Wu; Louis W. Chang; Ming-Hsien Tsai; Wan-Hsuan Chang; Hui-Ti Tsai; Chung Shi Yang; Pinpin Lin

Abstract Cadmium (Cd) is a component in quantum dot 705 (QD705). Whether QD705 behaves similar to Cd in vivo is of great concern. We compared the distributional kinetics of cadmium chloride (CdCl2) and QD705 in mice after intravenous injection. QD705 showed a longer plasma and body retention than CdCl2 and could be detected in the brain during early exposure. While both the liver and spleen demonstrated a constant Cd concentration for 28 days after QD705 injection, it is likely that this represents intact QD705 stored in mononuclear phagocytes. The kidneys showed a time-dependent accumulation of Cd in the QD705-exposed animals. By day 28, Cd in the kidneys from QD705 was 3-fold that of CdCl2. QD705 and CdCl2 have very different kinetics in distribution and metabolism. The long body retention of QD705 in the kidneys may mean that QD705 has even more renal toxicity than CdCl2.


Journal of Medicinal Chemistry | 2010

Substituted 4-carboxymethylpyroglutamic acid diamides as potent and selective inhibitors of fibroblast activation protein.

Ting-Yueh Tsai; Teng-Kuang Yeh; Xin Chen; Tsu Hsu; Yu-Chen Jao; Chih-Hsiang Huang; Jen-Shin Song; Yu-Chen Huang; Chia-Hui Chien; Jing-Huai Chiu; Shih-Chieh Yen; Hung-Kuan Tang; Yu-Sheng Chao; Weir-Torn Jiaang

Fibroblast activation protein (FAP) belongs to the prolyl peptidase family. FAP inhibition is expected to become a new antitumor target. Most known FAP inhibitors often resemble the dipeptide cleavage products, with a boroproline at the P1 site; however, these inhibitors also inhibit DPP-IV, DPP-II, DPP8, and DPP9. Potent and selective FAP inhibitor is needed in evaluating that FAP as a therapeutic target. Therefore, it is important to develop selective FAP inhibitors for the use of target validation. To achieve this, optimization of the nonselective DPP-IV inhibitor 8 led to the discovery of a new class of substituted 4-carboxymethylpyroglutamic acid diamides as FAP inhibitors. SAR studies resulted in a number of FAP inhibitors having IC(50) of <100 nM with excellent selectivity over DPP-IV, DPP-II, DPP8, and DPP9 (IC(50) > 100 μM). Compounds 18a, 18b, and 19 are the only known potent and selective FAP inhibitors, which prompts us to further study the physiological role of FAP.


ChemMedChem | 2010

Discovery of 1‐(2,4‐Dichlorophenyl)‐4‐ethyl‐5‐(5‐(2‐(4‐(trifluoromethyl)phenyl)ethynyl)thiophen‐2‐yl)‐N‐(piperidin‐1‐yl)‐1H‐pyrazole‐3‐carboxamide as a Potential Peripheral Cannabinoid‐1 Receptor Inverse Agonist

Ming-Shiu Hung; Chun-Ping Chang; Ting‐Chieh Li; Teng-Kuang Yeh; Jen-Shin Song; Yinchiu Lin; Chien-Huang Wu; Po-Chu Kuo; Prashanth K. Amancha; Ying-Chieh Wong; Wenchi Hsiao; Yu-Sheng Chao; Kak-Shan Shia

Cannabinoid-1 receptor (CB1R) is one of the most abundant neuroregulatory receptors in the brain, and it is involved in regulating feeding and appetite. In addition to expression in brain, this receptor is also found in the peripheral organs, such as adipose tissues, muscle, and liver. In sharp contrast, the structurally closely related cannabinoid-2 receptor (CB2R) is expressed almost exclusively in the immune system and is primarily involved in immune regulation and neurodegeneration. The therapeutic potential of CB1R antagonists has been extensively reviewed, and at least one compound (1; also called rimonabant or SR141716A) has shown clinical evidence of weight reducing action. However, after its launch in 2006, it was subsequently withdrawn (2008) in Europe due to severe psychiatric effects including depression, anxiety and stress disorders. Currently, only two drugs, orlistat and sibutramine, are available for the long-term treatment of obesity; however, both have met with moderate success because of their limited weight-loss efficacy and many accompanying adverse effects, including high blood pressure and flatulence.

Collaboration


Dive into the Teng-Kuang Yeh's collaboration.

Top Co-Authors

Avatar

Yu-Sheng Chao

National Health Research Institutes

View shared research outputs
Top Co-Authors

Avatar

Chiung-Tong Chen

National Health Research Institutes

View shared research outputs
Top Co-Authors

Avatar

Jen-Shin Song

National Health Research Institutes

View shared research outputs
Top Co-Authors

Avatar

Yi-Wei Chang

National Health Research Institutes

View shared research outputs
Top Co-Authors

Avatar

John T.-A. Hsu

National Health Research Institutes

View shared research outputs
Top Co-Authors

Avatar

Hsing-Pang Hsieh

National Health Research Institutes

View shared research outputs
Top Co-Authors

Avatar

Weir-Torn Jiaang

National Health Research Institutes

View shared research outputs
Top Co-Authors

Avatar

Kak-Shan Shia

National Health Research Institutes

View shared research outputs
Top Co-Authors

Avatar

Wen-Hsing Lin

National Health Research Institutes

View shared research outputs
Top Co-Authors

Avatar

Chien-Huang Wu

National Health Research Institutes

View shared research outputs
Researchain Logo
Decentralizing Knowledge