Teng Yao
Hong Kong University of Science and Technology
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Teng Yao.
Science of The Total Environment | 2016
Xingcheng Lu; Teng Yao; Jimmy Chi Hung Fung; Changqing Lin
The Pearl River Delta region (PRD) is the economic growth engine of China and also one of the most urbanized regions in the world. As a two-sided sword, rapid economic development causes air pollution and poses adverse health effects to the citizens in this area. This work estimated the negative health effects in the PRD caused by the four major ambient pollutants (SO2, NO2, O3 and PM10) from 2010 to 2013 by using a log linear exposure-response function and the WRF-CMAQ modeling system. Economic loss due to mortality and morbidity was evaluated by the value of statistical life (VSL) and cost of illness (COI) methods. The results show that the overall possible short-term all-cause mortality due to NO2, O3 and PM10 reached the highest in 2013 with the values being 13,217-22,800. The highest total economic loss, which ranged from 14,768 to 25,305million USD, occurred in 2013 and was equivalent to 1.4%-2.3% of the local gross domestic product. The monthly profile of cases of negative health effects varied by city and the types of ambient pollutants. The ratio of mortality attributed to air pollutants to total population was higher in urban areas than in rural areas. People living in the countryside should consider the possible adverse health effects of urban areas before they plan a move to the city. The results show that the health burden caused by the ambient pollutants over this region is serious and suggest that tighter control policies should be implemented in the future to reduce the level of air pollution.
Environment International | 2017
Xingcheng Lu; Changqing Lin; Ying Li; Teng Yao; Jimmy Chi Hung Fung; Alexis Kai-Hon Lau
As the major engine of economic growth in China, the Pearl River Delta (PRD) region is one of the most urbanized regions in the world. Rapid development has brought great wealth to its citizens; however, at the same time, increasing emissions of ambient pollutants from vehicles and industrial combustions have caused considerable air pollution and negative health effects for the regions residents. In this study, the concentration response function method was applied together with satellite-retrieved particulate matter (PM10 and PM2.5) concentration data to estimate the health burden caused by this pollutant from 2004 to 2013. The value of statistical life was used to calculate the economic loss due to the negative health effects of particulate matter pollution. Our results show that in the whole PRD region, the estimated number of deaths from the four diseases attributable to PM2.5 was the highest in 2012, at 45,000 (19,000-61,000); the number of all-cause hospital admissions due to PM10 was the highest in 2013, reaching up to 91,000 (0-270,000) (excluding Hong Kong). Among the 10 cities, the capital city Guangzhou suffered the most from ambient particulate matter pollution and had the highest mortality and morbidity over the 10years. The cost of mortality in this region was the highest in 2012, at 46,000 million USD, or around 6.1% of local total gross domestic product (GDP). The positive spatial relationship between the degree of urbanization and the particulate matter concentration proves that the urbanization process does worsen air quality and hence increases the health risks of local urban citizens. It is recommended that local governments further enhance their control policies to better guarantee the health and wealth benefits of local residents.
Environmental Pollution | 2016
Xingcheng Lu; Teng Yao; Ying Li; Jimmy Chi Hung Fung; Alexis Kai-Hon Lau
As one of the most notorious atmospheric pollutants, NOx not only promotes the formation of ozone but also has adverse health effects on humans. It is therefore of great importance to study the sources of NOx and its effects on human health. The Comprehensive Air Quality Model (CAMx) modeling system and ozone source apportionment technology (OSAT) were used to study the contribution of NOx from different emission sources over southern China. The results indicate that heavy duty diesel vehicles (HDDVs) and industrial point sources are the two major local NOx sources, accounting for 30.8% and 18.5% of local NOx sources, respectively. In Hong Kong, marine emissions contributed around 43.4% of local NOx in 2011. Regional transport is another important source of this pollutant, especially in February and November, and it can contribute over 30% of ambient NOx on average. Power plant point emission is an significant regional source in Zhuhai, Zhongshan and Foshan. The total emission sources are estimated to cause 2119 (0-4405) respiratory deaths and 991 (0-2281) lung cancer deaths due to long-term exposure to NOx in the Pearl River Delta region. Our results suggest that local governments should combine their efforts and vigorously promote further reduction of NOx emissions, especially for those sources that make a substantial contribution to NOx emissions and affect human health: HDDV, LDGV, industrial point sources and marine sources.
Journal of Geophysical Research | 2017
Xingcheng Lu; Nan Chen; Yuhang Wang; Wenxiang Cao; Bo Zhu; Teng Yao; Jimmy Chi Hung Fung; Alexis Kai-Hon Lau
The ROx (=OH + HO2 + RO2) budget and O3 production at an urban site in central China (Wuhan) during autumn were simulated and analyzed for the first time using a UW Chemical Model 0-D box model constrained by in situ observational data. The daytime average OH, HO2, and RO2 concentrations were 2.2 × 106, 1.0 × 108, and 5.2 × 107 molecules cm−3, respectively. The average daytime O3 production rate was 8.8 ppbv h−1, and alkenes were the most important VOC species for O3 formation (contributing 45%) at this site. Our sensitivity test indicated that the atmospheric environment in Wuhan during autumn belongs to the VOC-limited regime. The daily average HONO concentration at this site during the study period reached 1.1 ppbv and played an important role in the oxidative capacity of the atmosphere. Without the source of excess HONO, the average daytime OH, HO2, RO2, and O3 production rates decreased by 36%, 26%, 27%, and 31% respectively. A correlation between the HONO to NO2 heterogeneous conversion efficiency and PM2.5 × SWR was found at this site; based on this relationship, if the PM2.5 concentration met the World Health Organization air quality standard (25 µg m−3), the O3 production rate in this city would decrease by 19% during late autumn. The burning of agricultural biomass severely affected the air quality in Wuhan during summer and autumn. Agricultural burning was found to account for 18% of the O3 formation during the study period. Our results suggest that VOC control and a ban on agricultural biomass burning should be considered as high-priority measures for improving the air quality in this region.
Atmospheric Environment | 2013
Dongwei Wu; Jimmy Chi Hung Fung; Teng Yao; Alexis Kai-Hon Lau
International Journal of Climatology | 2009
Xi Lu; Kimchiu Chow; Teng Yao; Alexis Kai-Hon Lau; Jimmy Chi Hung Fung
Journal of Geophysical Research | 2009
Xi Lu; Kimchiu Chow; Teng Yao; Jimmy Chi Hung Fung; Alexis Kai-Hon Lau
Theoretical and Applied Climatology | 2011
Jianbin Wu; Kimchiu Chow; Jimmy Chi Hung Fung; Alexis Kai-Hon Lau; Teng Yao
Atmospheric Research | 2014
Teng Yao; Jimmy Chi Hung Fung; Hui Ma; Alexis Kai-Hon Lau; Pai Wai Chan; Jian Zhen Yu; Jian Xue
Atmospheric Environment | 2016
Changqing Lin; Changhui Li; Alexis Kai-Hon Lau; Z. Yuan; Xingcheng Lu; K.T. Tse; Jimmy Chi Hung Fung; Y. Li; Teng Yao; Lin Su; Zhiyuan Li; Yongbo Zhang