Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Tenzin Gayden is active.

Publication


Featured researches published by Tenzin Gayden.


American Journal of Human Genetics | 2013

A Recurrent PDGFRB Mutation Causes Familial Infantile Myofibromatosis

Yee Him Cheung; Tenzin Gayden; Philippe M. Campeau; Charles A. LeDuc; Donna Russo; Van-Hung Nguyen; Jiancheng Guo; Ming Qi; Yanfang Guan; Steffen Albrecht; Brenda Moroz; Karen W. Eldin; James T. Lu; Jeremy Schwartzentruber; David Malkin; Albert M. Berghuis; Sherif Emil; Richard A. Gibbs; David L. Burk; Megan R. Vanstone; Brendan Lee; David Orchard; Kym M. Boycott; Wendy K. Chung; Nada Jabado

Infantile myofibromatosis (IM) is the most common benign fibrous tumor of soft tissues affecting young children. By using whole-exome sequencing, RNA sequencing, and targeted sequencing, we investigated germline and tumor DNA in individuals from four distinct families with the familial form of IM and in five simplex IM cases with no previous family history of this disease. We identified a germline mutation c.1681C>T (p.Arg561Cys) in platelet-derived growth factor receptor β (PDGFRB) in all 11 affected individuals with familial IM, although none of the five individuals with nonfamilial IM had mutations in this gene. We further identified a second heterozygous mutation in PDGFRB in two myofibromas from one of the affected familial cases, indicative of a potential second hit in this gene in the tumor. PDGFR-β promotes growth of mesenchymal cells, including blood vessels and smooth muscles, which are affected in IM. Our findings indicate p.Arg561Cys substitution in PDGFR-β as a cause of the dominant form of this disease. They provide a rationale for further investigations of this specific mutation and gene to assess the benefits of targeted therapies against PDGFR-β in aggressive life-threatening familial forms of the disease.


Nature Communications | 2016

Spatial and temporal homogeneity of driver mutations in diffuse intrinsic pontine glioma.

Hamid Nikbakht; Eshini Panditharatna; Leonie G. Mikael; Rui Li; Tenzin Gayden; Matthew Osmond; Cheng-Ying Ho; Madhuri Kambhampati; Eugene I. Hwang; Damien Faury; Alan Siu; Simon Papillon-Cavanagh; Denise Bechet; Keith L. Ligon; Benjamin Ellezam; Wendy J. Ingram; Caedyn Stinson; Andrew S. Moore; Katherine E. Warren; Jason Karamchandani; Roger J. Packer; Nada Jabado; Jacek Majewski; Javad Nazarian

Diffuse Intrinsic Pontine Gliomas (DIPGs) are deadly paediatric brain tumours where needle biopsies help guide diagnosis and targeted therapies. To address spatial heterogeneity, here we analyse 134 specimens from various neuroanatomical structures of whole autopsy brains from nine DIPG patients. Evolutionary reconstruction indicates histone 3 (H3) K27M—including H3.2K27M—mutations potentially arise first and are invariably associated with specific, high-fidelity obligate partners throughout the tumour and its spread, from diagnosis to end-stage disease, suggesting mutual need for tumorigenesis. These H3K27M ubiquitously-associated mutations involve alterations in TP53 cell-cycle (TP53/PPM1D) or specific growth factor pathways (ACVR1/PIK3R1). Later oncogenic alterations arise in sub-clones and often affect the PI3K pathway. Our findings are consistent with early tumour spread outside the brainstem including the cerebrum. The spatial and temporal homogeneity of main driver mutations in DIPG implies they will be captured by limited biopsies and emphasizes the need to develop therapies specifically targeting obligate oncohistone partnerships.


European Journal of Human Genetics | 2007

Paleolithic Y-haplogroup heritage predominates in a Cretan highland plateau

Laisel Martinez; Peter A. Underhill; Tenzin Gayden; Nicholas K. Moschonas; Cheryl-Emiliane T Chow; Simon Conti; Elisabetta Mamolini; Luigi Luca Cavalli-Sforza; Rene J. Herrera

The island of Crete, credited by some historical scholars as a central crucible of western civilization, has been under continuous archeological investigation since the second half of the nineteenth century. In the present work, the geographic stratification of the contemporary Cretan Y-chromosome gene pool was assessed by high-resolution haplotyping to investigate the potential imprints of past colonization episodes and the population substructure. In addition to analyzing the possible geographic origins of Y-chromosome lineages in relatively accessible areas of the island, this study includes samples from the isolated interior of the Lasithi Plateau – a mountain plain located in eastern Crete. The potential significance of the results from the latter region is underscored by the possibility that this region was used as a Minoan refugium. Comparisons of Y-haplogroup frequencies among three Cretan populations as well as with published data from additional Mediterranean locations revealed significant differences in the frequency distributions of Y-chromosome haplogroups within the island. The most outstanding differences were observed in haplogroups J2 and R1, with the predominance of haplogroup R lineages in the Lasithi Plateau and of haplogroup J lineages in the more accessible regions of the island. Y-STR-based analyses demonstrated the close affinity that R1a1 chromosomes from the Lasithi Plateau shared with those from the Balkans, but not with those from lowland eastern Crete. In contrast, Cretan R1b microsatellite-defined haplotypes displayed more resemblance to those from Northeast Italy than to those from Turkey and the Balkans.


Nature Genetics | 2017

Impaired H3K36 methylation defines a subset of head and neck squamous cell carcinomas

Simon Papillon-Cavanagh; Chao Lu; Tenzin Gayden; Leonie G. Mikael; Denise Bechet; Christina Karamboulas; Laurie Ailles; Jason Karamchandani; Dylan M. Marchione; Benjamin A. Garcia; Ilan Weinreb; David B. Goldstein; Peter W. Lewis; Octavia Maria Dancu; Sandeep Dhaliwal; William Stecho; Christopher J. Howlett; Joe S. Mymryk; John W. Barrett; Anthony C. Nichols; C. David Allis; Jacek Majewski; Nada Jabado

Human papillomavirus (HPV)-negative head and neck squamous cell carcinomas (HNSCCs) are deadly and common cancers. Recent genomic studies implicate multiple genetic pathways, including cell signaling, cell cycle and immune evasion, in their development. Here we analyze public data sets and uncover a previously unappreciated role of epigenome deregulation in the genesis of 13% of HPV-negative HNSCCs. Specifically, we identify novel recurrent mutations encoding p.Lys36Met (K36M) alterations in multiple H3 histone genes. histones. We further validate the presence of these alterations in multiple independent HNSCC data sets and show that, along with previously described NSD1 mutations, they correspond to a specific DNA methylation cluster. The K36M substitution and NSD1 defects converge on altering methylation of histone H3 at K36 (H3K36), subsequently blocking cellular differentiation and promoting oncogenesis. Our data further indicate limited redundancy for NSD family members in HPV-negative HNSCCs and suggest a potential role for impaired H3K36 methylation in their development. Further investigation of drugs targeting chromatin regulators is warranted in HPV-negative HNSCCs driven by aberrant H3K36 methylation.


Cancer Cell | 2015

MLL5 Orchestrates a Cancer Self-Renewal State by Repressing the Histone Variant H3.3 and Globally Reorganizing Chromatin

Marco Gallo; Fiona J. Coutinho; Robert Vanner; Tenzin Gayden; Stephen C. Mack; Alex Murison; Marc Remke; Ren Li; Naoya Takayama; Kinjal Desai; Lilian Lee; Xiaoyang Lan; Nicole I. Park; Dalia Barsyte-Lovejoy; David Smil; Dominik Sturm; Michelle Kushida; Renee Head; Michael D. Cusimano; Mark Bernstein; Ian Clarke; John E. Dick; Stefan M. Pfister; Jeremy N. Rich; C.H. Arrowsmith; Michael D. Taylor; Nada Jabado; David P. Bazett-Jones; Mathieu Lupien; Peter Dirks

Mutations in the histone 3 variant H3.3 have been identified in one-third of pediatric glioblastomas (GBMs), but not in adult tumors. Here we show that H3.3 is a dynamic determinant of functional properties in adult GBM. H3.3 is repressed by mixed lineage leukemia 5 (MLL5) in self-renewing GBM cells. MLL5 is a global epigenetic repressor that orchestrates reorganization of chromatin structure by punctuating chromosomes with foci of compacted chromatin, favoring tumorigenic and self-renewing properties. Conversely, H3.3 antagonizes self-renewal and promotes differentiation. We exploited these epigenetic states to rationally identify two small molecules that effectively curb cancer stem cell properties in a preclinical model. Our work uncovers a role for MLL5 and H3.3 in maintaining self-renewal hierarchies in adult GBM.


Journal of Human Genetics | 2009

Genetic insights into the origins of Tibeto-Burman populations in the Himalayas

Tenzin Gayden; Sheyla Mirabal; Alicia M Cadenas; Harlette Lacau; Tanya M. Simms; Diana Morlote; Shilpa Chennakrishnaiah; Rene J. Herrera

The Himalayan mountain range has played a dual role in shaping the genetic landscape of the region by (1) delineating east–west migrations including the Silk Road and (2) restricting human dispersals, especially from the Indian subcontinent into the Tibetan plateau. In this study, 15 hypervariable autosomal STR loci were employed to evaluate the genetic relationships of three populations from Nepal (Kathmandu, Newar and Tamang) and a general collection from Tibet. These Himalayan groups were compared to geographically targeted worldwide populations as well as Tibeto-Burman (TB) speaking groups from Northeast India. Our results suggest a Northeast Asian origin for the Himalayan populations with subsequent gene flow from South Asia into the Kathmandu valley and the Newar population, corroborating a previous Y-chromosome study. In contrast, Tamang and Tibet exhibit limited genetic contributions from South Asia, possibly due to the orographic obstacle presented by the Himalayan massif. The TB groups from Northeast India are genetically distinct compared to their counterparts from the Himalayas probably resulting from prolonged isolation and/or founder effects.


Nature Genetics | 2017

Spatial heterogeneity in medulloblastoma

A. Sorana Morrissy; Florence M.G. Cavalli; Marc Remke; Vijay Ramaswamy; David Shih; Borja L. Holgado; Hamza Farooq; Laura K. Donovan; Livia Garzia; Sameer Agnihotri; Erin Kiehna; Eloi Mercier; Chelsea Mayoh; Simon Papillon-Cavanagh; Hamid Nikbakht; Tenzin Gayden; Jonathon Torchia; Daniel Picard; Diana Merino; Maria Vladoiu; Betty Luu; Xiaochong Wu; Craig Daniels; Stuart Horswell; Yuan Yao Thompson; Volker Hovestadt; Paul A. Northcott; David T. W. Jones; John Peacock; Xin Wang

Spatial heterogeneity of transcriptional and genetic markers between physically isolated biopsies of a single tumor poses major barriers to the identification of biomarkers and the development of targeted therapies that will be effective against the entire tumor. We analyzed the spatial heterogeneity of multiregional biopsies from 35 patients, using a combination of transcriptomic and genomic profiles. Medulloblastomas (MBs), but not high-grade gliomas (HGGs), demonstrated spatially homogeneous transcriptomes, which allowed for accurate subgrouping of tumors from a single biopsy. Conversely, somatic mutations that affect genes suitable for targeted therapeutics demonstrated high levels of spatial heterogeneity in MB, malignant glioma, and renal cell carcinoma (RCC). Actionable targets found in a single MB biopsy were seldom clonal across the entire tumor, which brings the efficacy of monotherapies against a single target into question. Clinical trials of targeted therapies for MB should first ensure the spatially ubiquitous nature of the target mutation.


European Journal of Human Genetics | 2012

Afghanistan from a Y-chromosome perspective

Harlette Lacau; Tenzin Gayden; Maria Regueiro; Shilpa Chennakrishnaiah; Areej Bukhari; Peter A. Underhill; Ralph Garcia-Bertrand; Rene J. Herrera

Central Asia has served as a corridor for human migrations providing trading routes since ancient times. It has functioned as a conduit connecting Europe and the Middle East with South Asia and far Eastern civilizations. Therefore, the study of populations in this region is essential for a comprehensive understanding of early human dispersal on the Eurasian continent. Although Y- chromosome distributions in Central Asia have been widely surveyed, present-day Afghanistan remains poorly characterized genetically. The present study addresses this lacuna by analyzing 190 Pathan males from Afghanistan using high-resolution Y-chromosome binary markers. In addition, haplotype diversity for its most common lineages (haplogroups R1a1a*-M198 and L3-M357) was estimated using a set of 15 Y-specific STR loci. The observed haplogroup distribution suggests some degree of genetic isolation of the northern population, likely due to the Hindu Kush mountain range separating it from the southern Afghans who have had greater contact with neighboring Pathans from Pakistan and migrations from the Indian subcontinent. Our study demonstrates genetic similarities between Pathans from Afghanistan and Pakistan, both of which are characterized by the predominance of haplogroup R1a1a*-M198 (>50%) and the sharing of the same modal haplotype. Furthermore, the high frequencies of R1a1a-M198 and the presence of G2c-M377 chromosomes in Pathans might represent phylogenetic signals from Khazars, a common link between Pathans and Ashkenazi groups, whereas the absence of E1b1b1a2-V13 lineage does not support their professed Greek ancestry.


Oncotarget | 2016

Barriers to horizontal cell transformation by extracellular vesicles containing oncogenic H-ras.

Tae-Hoon Lee; Shilpa Chennakrishnaiah; Brian Meehan; Laura Montermini; Delphine Garnier; Esterina D'Asti; Wenyang Hou; Nathalie Magnus; Tenzin Gayden; Nada Jabado; Kolja Eppert; Loydie Majewska; Janusz Rak

Extracellular vesicles (EVs) enable the exit of regulatory, mutant and oncogenic macromolecules (proteins, RNA and DNA) from their parental tumor cells and uptake of this material by unrelated cellular populations. Among the resulting biological effects of interest is the notion that cancer-derived EVs may mediate horizontal transformation of normal cells through transfer of mutant genes, including mutant ras. Here, we report that H-ras-mediated transformation of intestinal epithelial cells (IEC-18) results in the emission of exosome-like EVs containing genomic DNA, HRAS oncoprotein and transcript. However, EV-mediated horizontal transformation of non-transformed cells (epithelial, astrocytic, fibroblastic and endothelial) is transient, limited or absent due to barrier mechanisms that curtail the uptake, retention and function of oncogenic H-ras in recipient cells. Thus, epithelial cells and astrocytes are resistant to EV uptake, unless they undergo malignant transformation. In contrast, primary and immortalized fibroblasts are susceptible to the EV uptake, retention of H-ras DNA and phenotypic transformation, but these effects are transient and fail to produce a permanent tumorigenic conversion of these cells in vitro and in vivo, even after several months of observation. Increased exposure to EVs isolated from H-ras-transformed cancer cells, but not to those from their indolent counterparts, triggers demise of recipient fibroblasts. Uptake of H-ras-containing EVs stimulates but fails to transform primary endothelial cells. Thus, we suggest that intercellular transfer of oncogenes exerts regulatory rather than transforming influence on recipient cells, while cancer cells may often act as preferential EV recipients.


Oncotarget | 2016

Molecular analyses reveal close similarities between small cell carcinoma of the ovary, hypercalcemic type and atypical teratoid/rhabdoid tumor

Somayyeh Fahiminiya; Leora Witkowski; Javad Nadaf; Jian Carrot-Zhang; Catherine Goudie; Martin Hasselblatt; Pascal Johann; Marcel Kool; Ryan S. Lee; Tenzin Gayden; Charles W. M. Roberts; Jaclyn A. Biegel; Nada Jabado; Jacek Majewski; William D. Foulkes

Small cell carcinoma of the ovary, hypercalcemic type (SCCOHT) is the most common undifferentiated ovarian malignancy diagnosed in women under age 40. We and others recently determined that germline and/or somatic deleterious mutations in SMARCA4 characterize SCCOHT. Alterations in this gene, or the related SWI/SNF chromatin remodeling gene SMARCB1, have been previously reported in atypical teratoid/rhabdoid tumors (ATRTs) and malignant rhabdoid tumors (MRTs). To further describe the somatic landscape of SCCOHT, we performed whole exome sequencing on 14 tumors and their matched normal tissues and compared their genomic alterations with those in ATRT and ovarian high grade serous carcinoma (HGSC). We confirmed that SMARCA4 is the only recurrently mutated gene in SCCOHT, and show that recurrent allelic imbalance is observed exclusively on chromosome 19p, where SMARCA4 resides. By comparing genomic alterations between SCCOHT, ATRT and HGSC, we demonstrate that SCCOHTs, like ATRTs, have a remarkably simple genome and harbor significantly fewer somatic protein-coding mutations and chromosomal alterations than HGSC. Furthermore, a comparison of global DNA methylation profiles of 45 SCCOHTs, 65 ATRTs, and 92 HGSCs demonstrates a strong epigenetic correlation between SCCOHT and ATRT. Our results further confirm that the genomic and epigenomic signatures of SCCOHT are more similar to those of ATRT than HGSC, supporting our previous hypothesis that SCCOHT is a rhabdoid tumor and should be renamed MRT of the ovary. Furthermore, we conclude that SMARCA4 inactivation is the main cause of SCCOHT, and that new distinct therapeutic approaches should be developed to specifically target this devastating tumor.

Collaboration


Dive into the Tenzin Gayden's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge