Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Teoman Akcay is active.

Publication


Featured researches published by Teoman Akcay.


The Journal of Clinical Endocrinology and Metabolism | 2009

Hypogonadotropic Hypogonadism due to a Novel Missense Mutation in the First Extracellular Loop of the Neurokinin B Receptor

Tulay Guran; Gwen Tolhurst; Abdullah Bereket; Nuno Rocha; Keith Porter; Serap Turan; Fiona M. Gribble; L. Damla Kotan; Teoman Akcay; Zeynep Atay; Husniye Canan; Ayse Serin; Stephen O'Rahilly; Frank Reimann; Robert K. Semple; A. Kemal Topaloglu

CONTEXT The neurokinin B (NKB) receptor, encoded by TACR3, is widely expressed within the central nervous system, including hypothalamic nuclei involved in regulating GnRH release. We have recently reported two mutations in transmembrane segments of the receptor and a missense mutation in NKB in patients with normosmic isolated hypogonadotropic hypogonadism (nIHH). PATIENTS AND METHODS We sequenced the TACR3 gene in a family in which three siblings had nIHH. The novel mutant receptor thus identified was studied in a heterologous expression system using calcium flux as the functional readout. RESULTS All affected siblings were homozygous for the His148Leu mutation, in the first extracellular loop of the NKB receptor. The His148Leu mutant receptor exhibited profoundly impaired signaling in response to NKB (EC(50) = 3 +/- 0.1 nm and >5 microm for wild-type and His148Leu, respectively). The location of the mutation in an extracellular part of the receptor led us also to test whether senktide, a synthetic NKB analog, may retain ability to stimulate the mutant receptor. However, the signaling activity of the His148Leu receptor in response to senktide was also severely impaired (EC(50) = 1 +/- 1 nm for wild-type and no significant response of His148Leu to 10 microm). CONCLUSIONS Homozygosity for the TACR3 His148Leu mutation leads to failure of sexual maturation in humans, whereas signaling by the mutant receptor in vitro in response to either NKB or senktide is severely impaired. These observations further strengthen the link between NKB, the NKB receptor, and regulation of human reproductive function.


European Journal of Endocrinology | 2010

Diazoxide-responsive hyperinsulinemic hypoglycemia caused by HNF4A gene mutations

Sarah E. Flanagan; Ritika R. Kapoor; Girish Mali; Declan Cody; Nuala Murphy; Bernd Schwahn; Tania Siahanidou; Indraneel Banerjee; Teoman Akcay; Oscar Rubio-Cabezas; Julian Shield; Khalid Hussain; Sian Ellard

Objective The phenotype associated with heterozygous HNF4A gene mutations has recently been extended to include diazoxide responsive neonatal hypoglycemia in addition to maturity-onset diabetes of the young (MODY). To date, mutation screening has been limited to patients with a family history consistent with MODY. In this study, we investigated the prevalence of HNF4A mutations in a large cohort of patients with diazoxide responsive hyperinsulinemic hypoglycemia (HH). Subjects and methods We sequenced the ABCC8, KCNJ11, GCK, GLUD1, and/or HNF4A genes in 220 patients with HH responsive to diazoxide. The order of genetic testing was dependent upon the clinical phenotype. Results A genetic diagnosis was possible for 59/220 (27%) patients. KATP channel mutations were most common (15%) followed by GLUD1 mutations causing hyperinsulinism with hyperammonemia (5.9%), and HNF4A mutations (5%). Seven of the 11 probands with a heterozygous HNF4A mutation did not have a parent affected with diabetes, and four de novo mutations were confirmed. These patients were diagnosed with HI within the first week of life (median age 1 day), and they had increased birth weight (median +2.4 SDS). The duration of diazoxide treatment ranged from 3 months to ongoing at 8 years. Conclusions In this large series, HNF4A mutations are the third most common cause of diazoxide responsive HH. We recommend that HNF4A sequencing is considered in all patients with diazoxide responsive HH diagnosed in the first week of life irrespective of a family history of diabetes, once KATP channel mutations have been excluded.


The Journal of Clinical Endocrinology and Metabolism | 2012

Ten Novel Mutations in the NR5A1 Gene Cause Disordered Sex Development in 46,XY and Ovarian Insufficiency in 46,XX Individuals

Núria Camats; Amit V. Pandey; Mónica Fernández-Cancio; Pilar Andaluz; Marco Janner; N. Torán; Francisca Moreno; Abdullah Bereket; Teoman Akcay; E. García-García; M. T. Muñoz; R. Gracia; M. Nistal; L. Castaño; Primus E. Mullis; Antonio Carrascosa; Laura Audí; Christa E. Flück

CONTEXT Steroidogenic factor-1 (SF-1/NR5A1) is a nuclear receptor that regulates adrenal and reproductive development and function. NR5A1 mutations have been detected in 46,XY individuals with disorders of sexual development (DSD) but apparently normal adrenal function and in 46,XX women with normal sexual development yet primary ovarian insufficiency (POI). OBJECTIVE A group of 100 46,XY DSD and two POI was studied for NR5A1 mutations and their impact. DESIGN Clinical, biochemical, histological, genetic, and functional characteristics of the patients with NR5A1 mutations are reported. SETTING Patients were referred from different centers in Spain, Switzerland, and Turkey. Histological and genetic studies were performed in Barcelona, Spain. In vitro studies were performed in Bern, Switzerland. PATIENTS A total of 65 Spanish and 35 Turkish patients with 46,XY DSD and two Swiss 46,XX patients with POI were investigated. MAIN OUTCOME Ten novel heterozygote NR5A1 mutations were detected and characterized (five missense, one nonsense, three frameshift mutations, and one duplication). RESULTS The novel NR5A1 mutations were tested in vitro by promoter transactivation assays showing grossly reduced activity for mutations in the DNA binding domain and variably reduced activity for other mutations. Dominant negative effect of the mutations was excluded. We found high variability and thus no apparent genotype-structure-function-phenotype correlation. Histological studies of testes revealed vacuolization of Leydig cells due to fat accumulation. CONCLUSIONS SF-1/NR5A1 mutations are frequently found in 46,XY DSD individuals (9%) and manifest with a broad phenotype. Testes histology is characteristic for fat accumulation and degeneration over time, similar to findings observed in patients with lipoid congenital adrenal hyperplasia (due to StAR mutations). Genotype-structure-function-phenotype correlation remains elusive.


Journal of The American Society of Nephrology | 2016

Autosomal-Recessive Mutations in SLC34A1 Encoding Sodium-Phosphate Cotransporter 2A Cause Idiopathic Infantile Hypercalcemia

Karl P. Schlingmann; Justyna Ruminska; Martin Kaufmann; Ismail Dursun; Monica Patti; Birgitta Kranz; Ewa Pronicka; Elżbieta Ciara; Teoman Akcay; Derya Bulus; Elisabeth A. M. Cornelissen; Aneta Gawlik; Przemysław Sikora; Ludwig Patzer; Matthias Galiano; Veselin Boyadzhiev; Miroslav Dumic; Asaf Vivante; Robert Kleta; Benjamin Dekel; Elena Levtchenko; René J. M. Bindels; Stephan Rust; Ian C. Forster; Nati Hernando; Glenville Jones; Carsten A. Wagner; Martin Konrad

Idiopathic infantile hypercalcemia (IIH) is characterized by severe hypercalcemia with failure to thrive, vomiting, dehydration, and nephrocalcinosis. Recently, mutations in the vitamin D catabolizing enzyme 25-hydroxyvitamin D3-24-hydroxylase (CYP24A1) were described that lead to increased sensitivity to vitamin D due to accumulation of the active metabolite 1,25-(OH)2D3. In a subgroup of patients who presented in early infancy with renal phosphate wasting and symptomatic hypercalcemia, mutations in CYP24A1 were excluded. Four patients from families with parental consanguinity were subjected to homozygosity mapping that identified a second IIH gene locus on chromosome 5q35 with a maximum logarithm of odds (LOD) score of 6.79. The sequence analysis of the most promising candidate gene, SLC34A1 encoding renal sodium-phosphate cotransporter 2A (NaPi-IIa), revealed autosomal-recessive mutations in the four index cases and in 12 patients with sporadic IIH. Functional studies of mutant NaPi-IIa in Xenopus oocytes and opossum kidney (OK) cells demonstrated disturbed trafficking to the plasma membrane and loss of phosphate transport activity. Analysis of calcium and phosphate metabolism in Slc34a1-knockout mice highlighted the effect of phosphate depletion and fibroblast growth factor-23 suppression on the development of the IIH phenotype. The human and mice data together demonstrate that primary renal phosphate wasting caused by defective NaPi-IIa function induces inappropriate production of 1,25-(OH)2D3 with subsequent symptomatic hypercalcemia. Clinical and laboratory findings persist despite cessation of vitamin D prophylaxis but rapidly respond to phosphate supplementation. Therefore, early differentiation between SLC34A1 (NaPi-IIa) and CYP24A1 (24-hydroxylase) defects appears critical for targeted therapy in patients with IIH.


Journal of Clinical Research in Pediatric Endocrinology | 2011

Serum alkaline phosphatase levels in healthy children and evaluation of alkaline phosphatase z-scores in different types of rickets.

Serap Turan; Burcu Topcu; Ibrahim Gökçe; Tulay Guran; Zeynep Atay; Anjumanara Omar; Teoman Akcay; Abdullah Bereket

Objective: Serum alkaline phosphatase (ALP) levels show great variation with age and sex in children and adolescents. Additionally, different buffers used even in the same method cause variable results. This detail is not usually taken into account in the evaluation. We aimed to study pediatric age- and sex-specific reference ranges for ALP by colorimetric assay using p-nitrophenyl phosphate as substrate and diethanolamine as buffer and also to compare the ALP levels in patients with different types of rickets. Methods: 1741 healthy children and adolescents (904 girls) were included in the study for normative data. 77 different ALP measurements from 38 nutritional rickets (NR), 7 vitamin D-dependent rickets (VDDR) and 8 hypophosphatemic rickets (HR) patients were included. Results: Reference values for ALP were constructed. ALP levels demonstrated a tetraphasic course with two peaks at infancy and puberty. There was no difference in ALP levels between boys and girls until puberty. However, higher ALP levels were noted at 10-11 years in girls (p=0.02) and at 12-13, 14-15, 16-17 years in boys (p<0.001). ALP levels start to decline after age 12 and 14 in girls and boys, respectively. Serum ALP levels were highest in the VDDR group and lowest in the HR group (median z-score values in HR, VDDR and NR were 3.6, 10.4 and 6.5, respectively; p<0.001). Similarly, plasma parathormone(PTH) levels ranged from highest to lowest in the VDDR, NR and HR groups (median values: 525, 237 and 98 pg/mL, respectively; p<0.001). Conclusions: This normative data will provide a basis for better evaluation of ALP levels determined by the described method. Furthermore, use of z-scores gives a more precise assessment of changes in ALP levels in rickets and other bone disorders. Conflict of interest:None declared.


Journal of Paediatrics and Child Health | 2008

Significance of acanthosis nigricans in childhood obesity

Tulay Guran; Serap Turan; Teoman Akcay; Abdullah Bereket

Aim:  Acanthosis nigricans (AN) is among the most common dermatologic manifestations of obesity and hyperinsulinism. In this study, we aimed to find the clinical and laboratory differences in obese children with AN and without AN (non‐AN).


The Journal of Clinical Endocrinology and Metabolism | 2016

Rare Causes of Primary Adrenal Insufficiency: Genetic and Clinical Characterization of a Large Nationwide Cohort

Tulay Guran; Federica Buonocore; Nurcin Saka; Mehmet Nuri Özbek; Zehra Aycan; Abdullah Bereket; Firdevs Bas; Sukran Darcan; Aysun Bideci; Ayla Güven; Korcan Demir; Aysehan Akinci; Muammer Buyukinan; Banu Kucukemre Aydin; Serap Turan; Sebahat Yılmaz Ağladıoğlu; Zeynep Atay; Zehra Yavas Abali; Omer Tarim; Gönül Çatlı; Bilgin Yuksel; Teoman Akcay; Metin Yildiz; Samim Ozen; Esra Döğer; Huseyin Demirbilek; Ahmet Uçar; Emregul Isik; Bayram Özhan; Semih Bolu

Context: Primary adrenal insufficiency (PAI) is a life-threatening condition that is often due to monogenic causes in children. Although congenital adrenal hyperplasia occurs commonly, several other important molecular causes have been reported, often with overlapping clinical and biochemical features. The relative prevalence of these conditions is not known, but making a specific diagnosis can have important implications for management. Objective: The objective of the study was to investigate the clinical and molecular genetic characteristics of a nationwide cohort of children with PAI of unknown etiology. Design: A structured questionnaire was used to evaluate clinical, biochemical, and imaging data. Genetic analysis was performed using Haloplex capture and next-generation sequencing. Patients with congenital adrenal hyperplasia, adrenoleukodystrophy, autoimmune adrenal insufficiency, or obvious syndromic PAI were excluded. Setting: The study was conducted in 19 tertiary pediatric endocrinology clinics. Patients: Ninety-five children (48 females, aged 0–18 y, eight familial) with PAI of unknown etiology participated in the study. Results: A genetic diagnosis was obtained in 77 patients (81%). The range of etiologies was as follows: MC2R (n = 25), NR0B1 (n = 12), STAR (n = 11), CYP11A1 (n = 9), MRAP (n = 9), NNT (n = 7), ABCD1 (n = 2), NR5A1 (n = 1), and AAAS (n = 1). Recurrent mutations occurred in several genes, such as c.560delT in MC2R, p.R451W in CYP11A1, and c.IVS3ds+1delG in MRAP. Several important clinical and molecular insights emerged. Conclusion: This is the largest nationwide study of the molecular genetics of childhood PAI undertaken. Achieving a molecular diagnosis in more than 80% of children has important translational impact for counseling families, presymptomatic diagnosis, personalized treatment (eg, mineralocorticoid replacement), predicting comorbidities (eg, neurological, puberty/fertility), and targeting clinical genetic testing in the future.


Bone | 2010

Identification of a novel dentin matrix protein-1 (DMP-1) mutation and dental anomalies in a kindred with autosomal recessive hypophosphatemia

Serap Turan; Cumhur Aydin; Abdullah Bereket; Teoman Akcay; Tulay Guran; Betul Akmen Yaralioglu; Murat Bastepe; Harald Jüppner

An autosomal recessive form of hypophosphatemia (ARHP) was recently shown to be caused by homozygous mutations in DMP1, the gene encoding dentin matrix protein-1 (DMP-1), a non-collagenous bone matrix protein with an important role in the development and mineralization of bone and teeth. Here, we describe a previously not reported consanguineous ARHP kindred in which the three affected individuals carry a novel homozygous DMP-1 mutation. The index case presented at the age of 3 years with bowing of his legs and showed hypophosphatemia due to insufficient renal phosphate retention. Serum alkaline phosphatase activity was elevated, with initially normal PTH. FGF23 was inappropriately normal at an older age while being treated with oral phosphate and 1,25(OH)(2)D. Similar clinical and biochemical findings, except for elevated FGF23 levels, were present in his 16-month-old brother and his 12.5-year-old female cousin; the parents of the three affected children are first-degree cousins. Nucleotide sequence analysis was performed on PCR-amplified exons encoding DMP-1 and flanking intronic regions. A novel homozygous frame-shift mutation (c.485Tdel; p.Glu163ArgfsX53) in exon 6 resulting in a premature stop codon was identified in all effected individuals. The parents and available unaffected siblings were heterozygous for c.485Tdel. Tooth growth and shape were normal for the index case, his affected brother and cousin, but their permanent and deciduous teeth displayed enlarged pulp chambers. The identified genetic mutation underscores the importance of DMP-1 mutations in the pathogenesis of ARHP. Furthermore, DMP-1 mutations appear to contribute, through yet unknown mechanisms, to tooth development.


The Journal of Clinical Endocrinology and Metabolism | 2011

Genome-Wide Homozygosity Analysis Reveals HADH Mutations as a Common Cause of Diazoxide-Responsive Hyperinsulinemic-Hypoglycemia in Consanguineous Pedigrees

Sarah E. Flanagan; Ann-Marie Patch; Jonathan M. Locke; Teoman Akcay; Enver Simsek; Mohammadreza Alaei; Zeinab Yekta; M Desai; Ritika R. Kapoor; Khalid Hussain; Sian Ellard

HADH mutations are common in consanguineous pedigrees with diazoxide-responsive hyperinsulinaemichypoglycemia; therefore, genetic testing is recommended, even in the absence of abnormal fatty acid oxidation.


Nephrology Dialysis Transplantation | 2012

Clinical and molecular characterization of Turkish patients with familial hypomagnesaemia: novel mutations in TRPM6 and CLDN16 genes

Tulay Guran; Teoman Akcay; Abdullah Bereket; Zeynep Atay; Serap Turan; Lea Haisch; Martin Konrad; Karl P. Schlingmann

BACKGROUND Recent identification and characterization of novel renal Mg(2+) transporters and ion channels have greatly increased our understanding of the normal physiology of renal magnesium handling. METHODS The present study deals with the clinical and molecular characterization of eight Turkish children (median age 10.6 years, range 3-16.2 years, five boys and three girls) with primary hypomagnesaemia from six families. RESULTS All patients initially presented with tetany and convulsions. Laboratory evaluation yielded severely low serum magnesium levels and low serum calcium levels in all patients. While six patients exhibited inadequately low parathyroid hormone levels, the two remaining patients showed hyperparathyroidism, hypercalciuria and nephrocalcinosis. Genetic studies revealed familial hypomagnesaemia with secondary hypocalcaemia (HSH) due to a TRPM6 mutation in six patients and familial hypomagnesaemia with hypercalciuria and nephrocalcinosis (FHHNC) due to a CLDN16 mutation in one patient. CONCLUSIONS Among recently identified magnesium-wasting disorders, HSH and FHHNC represent two major entities also in the Turkish population. Besides clinical course and laboratory diagnosis of hypomagnesaemia, the detection of renal calcium wasting and parathyroid function are crucial to differentiate between these most prevalent forms of hereditary magnesium deficiency. While TRPM6 mutations underlying HSH almost uniformly lead to a complete loss of function of the TRPM6 protein, the severity of FHHNC phenotype depends on the residual function of the mutated claudin-16 protein.

Collaboration


Dive into the Teoman Akcay's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Arzu Akcay

Boston Children's Hospital

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge