Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Teppei Fujikawa is active.

Publication


Featured researches published by Teppei Fujikawa.


Cell Metabolism | 2010

SIRT1 deacetylase in POMC neurons is required for homeostatic defenses against diet-induced obesity

Giorgio Ramadori; Teppei Fujikawa; Makoto Fukuda; Jason G. Anderson; Donald A. Morgan; Raul Mostoslavsky; Ronald C. Stuart; Mario Perello; Claudia R. Vianna; Eduardo A. Nillni; Kamal Rahmouni; Roberto Coppari

Feeding on high-calorie (HC) diets induces serious metabolic imbalances, including obesity. Understanding the mechanisms against excessive body weight gain is critical for developing effective antiobesity strategies. Here we show that lack of nicotinamide adenine dinucleotide (NAD(+))-dependent deacetylase SIRT1 in pro-opiomelanocortin (POMC) neurons causes hypersensitivity to diet-induced obesity due to reduced energy expenditure. The ability of leptin to properly engage the phosphoinositide 3-kinase (PI3K) signaling in POMC neurons and elicit remodeling of perigonadal white adipose tissue (WAT) is severely compromised in mutant mice. Also, electrophysiological and histomorphomolecular analyses indicate a selective reduction in sympathetic nerve activity and brown-fat-like characteristics in perigonadal WAT of mutant mice, suggesting a physiologically important role for POMC neurons in controlling this visceral fat depot. In summary, our results provide direct genetic evidence that SIRT1 in POMC neurons is required for normal autonomic adaptations against diet-induced obesity.


Proceedings of the National Academy of Sciences of the United States of America | 2010

Leptin therapy improves insulin-deficient type 1 diabetes by CNS-dependent mechanisms in mice

Teppei Fujikawa; Jen-Chieh Chuang; Ichiro Sakata; Giorgio Ramadori; Roberto Coppari

Leptin monotherapy reverses the deadly consequences and improves several of the metabolic imbalances caused by insulin-deficient type 1 diabetes (T1D) in rodents. However, the mechanism(s) underlying these effects is totally unknown. Here, we report that intracerebroventricular (icv) infusion of leptin reverses lethality and greatly improves hyperglycemia, hyperglucagonemia, hyperketonemia, and polyuria caused by insulin deficiency in mice. Notably, icv leptin administration leads to increased body weight while suppressing food intake, thus correcting the catabolic consequences of T1D. Also, icv leptin delivery improves expression of the metabolically relevant hypothalamic neuropeptides proopiomelanocortin, neuropeptide Y, and agouti-related peptide in T1D mice. Furthermore, this treatment normalizes phosphoenolpyruvate carboxykinase 1 contents without affecting glycogen levels in the liver. Pancreatic β-cell regeneration does not underlie these beneficial effects of leptin, because circulating insulin levels were undetectable at basal levels and following a glucose overload. Also, pancreatic preproinsulin mRNA was completely absent in these icv leptin-treated T1D mice. Furthermore, the antidiabetic effects of icv leptin administration rapidly vanished (i.e., within 48 h) after leptin treatment was interrupted. Collectively, these results unveil a key role for the brain in mediating the antidiabetic actions of leptin in the context of T1D.


Endocrinology | 2009

Central administration of resveratrol improves diet-induced diabetes.

Giorgio Ramadori; Laurent Gautron; Teppei Fujikawa; Claudia R. Vianna; Joel K. Elmquist; Roberto Coppari

Resveratrol is a natural polyphenolic compound that activates nicotinamide adenosine dinucleotide-dependent deacetylase SIRT1. Resveratrol has recently been shown to exert potent antidiabetic actions when orally delivered to animal models of type 2 diabetes. However, the tissue(s) mediating these beneficial effects is unknown. Because SIRT1 is expressed in central nervous system (CNS) neurons known to control glucose and insulin homeostasis, we hypothesized that resveratrol antidiabetic effects are mediated by the brain. Here, we report that long-term intracerebroventricular infusion of resveratrol normalizes hyperglycemia and greatly improves hyperinsulinemia in diet-induced obese and diabetic mice. It is noteworthy that these effects are independent of changes in body weight, food intake, and circulating leptin levels. In addition, CNS resveratrol delivery improves hypothalamic nuclear factor-kappaB inflammatory signaling by reducing acetylated-RelA/p65 and total RelA/p65 protein contents, and inhibitor of nuclear factor-kappaB alpha and IkappaB kinase beta mRNA levels. Furthermore, this treatment leads to reduced hepatic phosphoenolpyruvate carboxykinase 1 mRNA and protein levels and ameliorates pyruvate-induced hyperglycemia in this mouse model of type 2 diabetes. Collectively, our results unveiled a previously unrecognized key role for the CNS in mediating the antidiabetic actions of resveratrol.


Cell Metabolism | 2014

Xbp1s in Pomc neurons connects ER stress with energy balance and glucose homeostasis

Kevin W. Williams; Tiemin Liu; Xingxing Kong; Makoto Fukuda; Yingfeng Deng; Eric D. Berglund; Zhuo Deng; Yong Gao; Tianya Liu; Jong Woo Sohn; Lin Jia; Teppei Fujikawa; Daisuke Kohno; Michael M. Scott; Syann Lee; Charlotte E. Lee; Kai Sun; Yongsheng Chang; Philipp E. Scherer; Joel K. Elmquist

The molecular mechanisms underlying neuronal leptin and insulin resistance in obesity and diabetes remain unclear. Here we show that induction of the unfolded protein response transcription factor spliced X-box binding protein 1 (Xbp1s) in pro-opiomelanocortin (Pomc) neurons alone is sufficient to protect against diet-induced obesity as well as improve leptin and insulin sensitivity, even in the presence of strong activators of ER stress. We also demonstrate that constitutive expression of Xbp1s in Pomc neurons contributes to improved hepatic insulin sensitivity and suppression of endogenous glucose production. Notably, elevated Xbp1s levels in Pomc neurons also resulted in activation of the Xbp1s axis in the liver via a cell-nonautonomous mechanism. Together our results identify critical molecular mechanisms linking ER stress in arcuate Pomc neurons to acute leptin and insulin resistance as well as liver metabolism in diet-induced obesity and diabetes.


Cell Metabolism | 2011

SIRT1 deacetylase in SF1 neurons protects against metabolic imbalance

Giorgio Ramadori; Teppei Fujikawa; Jason G. Anderson; Eric D. Berglund; Renata Frazão; Shaday Michan; Claudia R. Vianna; David A. Sinclair; Carol F. Elias; Roberto Coppari

Chronic feeding on high-calorie diets causes obesity and type 2 diabetes mellitus (T2DM), illnesses that affect hundreds of millions. Thus, understanding the pathways protecting against diet-induced metabolic imbalance is of paramount medical importance. Here, we show that mice lacking SIRT1 in steroidogenic factor 1 (SF1) neurons are hypersensitive to dietary obesity owing to maladaptive energy expenditure. Also, mutant mice have increased susceptibility to developing dietary T2DM due to insulin resistance in skeletal muscle. Mechanistically, these aberrations arise, in part, from impaired metabolic actions of the neuropeptide orexin-A and the hormone leptin. Conversely, mice overexpressing SIRT1 in SF1 neurons are more resistant to diet-induced obesity and insulin resistance due to increased energy expenditure and enhanced skeletal muscle insulin sensitivity. Our results unveil important protective roles of SIRT1 in SF1 neurons against dietary metabolic imbalance.


Cell Metabolism | 2013

Leptin engages a hypothalamic neurocircuitry to permit survival in the absence of insulin

Teppei Fujikawa; Eric D. Berglund; Vishal R. Patel; Giorgio Ramadori; Claudia R. Vianna; Linh Vong; Fabrizio Thorel; Simona Chera; Pedro Luis Herrera; Bradford B. Lowell; Joel K. Elmquist; Pierre Baldi; Roberto Coppari

The dogma that life without insulin is incompatible has recently been challenged by results showing the viability of insulin-deficient rodents undergoing leptin monotherapy. Yet, the mechanisms underlying these actions of leptin are unknown. Here, the metabolic outcomes of intracerebroventricular (i.c.v.) administration of leptin in mice devoid of insulin and lacking or re-expressing leptin receptors (LEPRs) only in selected neuronal groups were assessed. Our results demonstrate that concomitant re-expression of LEPRs only in hypothalamic γ-aminobutyric acid (GABA) and pro-opiomelanocortin (POMC) neurons is sufficient to fully mediate the lifesaving and antidiabetic actions of leptin in insulin deficiency. Our analyses indicate that enhanced glucose uptake by brown adipose tissue and soleus muscle, as well as improved hepatic metabolism, underlies these effects of leptin. Collectively, our data elucidate a hypothalamic-dependent pathway enabling life without insulin and hence pave the way for developing better treatments for diseases of insulin deficiency.


Frontiers in Neuroscience | 2013

Revisiting the ventral medial nucleus of the hypothalamus: the roles of SF-1 neurons in energy homeostasis

Yun Hee Choi; Teppei Fujikawa; Jiwon Lee; Anne L. Reuter; Ki Woo Kim

Obesity, diabetes, and other metabolic complications are growing concerns for public health and could lead to detrimental life-threatening conditions. Neurons whose activities are required for energy and glucose homeostasis are found in a number of hypothalamic nuclei. In the early twentieth century, the ventral medial nucleus of the hypothalamus (VMH) was the first site reported to play a prominent role in the regulation of energy homeostasis through control of food intake and energy expenditure. Recent studies using sophisticated genetic tools have further highlighted the importance of the VMH and have extended our understanding of the physiological role of the nucleus in regulation of energy homeostasis. These genetic studies were preceded by the identification of steroidogenic factor-1 (SF-1) as a marker of the VMH. This review focuses on the emerging homeostatic roles of the SF-1 neurons in the VMH discovered through the use of genetic models, particularly highlighting the control of energy, and glucose homeostasis.


Molecular metabolism | 2015

Enhanced insulin sensitivity in skeletal muscle and liver by physiological overexpression of SIRT6

Jason G. Anderson; Giorgio Ramadori; Rafael M. Ioris; Mirco Galiè; Eric D. Berglund; Katie C. Coate; Teppei Fujikawa; Stefania Pucciarelli; Benedetta Moreschini; Augusto Amici; Cristina Andreani; Roberto Coppari

Objective Available treatment for obesity and type 2 diabetes mellitus (T2DM) is suboptimal. Thus, identifying novel molecular target(s) exerting protective effects against these metabolic imbalances is of enormous medical significance. Sirt6 loss- and gain-of-function studies have generated confounding data regarding the role of this sirtuin on energy and glucose homeostasis, leaving unclear whether activation or inhibition of SIRT6 may be beneficial for the treatment of obesity and/or T2DM. Methods To address these issues, we developed and studied a novel mouse model designed to produce eutopic and physiological overexpression of SIRT6 (Sirt6BAC mice). These mutants and their controls underwent several metabolic analyses. These include whole-blood reverse phase high-performance liquid chromatography assay, glucose and pyruvate tolerance tests, hyperinsulinemic-euglycemic clamp assays, and assessment of basal and insulin-induced level of phosphorylated AKT (p-AKT)/AKT in gastrocnemius muscle. Results Sirt6BAC mice physiologically overexpress functionally competent SIRT6 protein. While Sirt6BAC mice have normal body weight and adiposity, they are protected from developing high-caloric-diet (HCD)-induced hyperglycemia and glucose intolerance. Also, Sirt6BAC mice display increased circulating level of the polyamine spermidine. The ability of insulin to suppress endogenous glucose production was significantly enhanced in Sirt6BAC mice compared to wild-type controls. Insulin-stimulated glucose uptake was increased in Sirt6BAC mice in both gastrocnemius and soleus muscle, but not in brain, interscapular brown adipose, or epididymal adipose tissue. Insulin-induced p-AKT/AKT ratio was increased in gastrocnemius muscle of Sirt6BAC mice compared to wild-type controls. Conclusions Our data indicate that moderate, physiological overexpression of SIRT6 enhances insulin sensitivity in skeletal muscle and liver, engendering protective actions against diet-induced T2DM. Hence, the present study provides support for the anti-T2DM effect of SIRT6 and suggests SIRT6 as a putative molecular target for anti-T2DM treatment.


Diabetologia | 2014

Elevated resistin levels induce central leptin resistance and increased atherosclerotic progression in mice

Ingrid Wernstedt Asterholm; Joseph M. Rutkowski; Teppei Fujikawa; You Ree Cho; Makoto Fukuda; Caroline Tao; Zhao V. Wang; Rana K. Gupta; Joel K. Elmquist; Philipp E. Scherer

Aims/hypothesisResistin was originally identified as an adipocyte-derived factor upregulated during obesity and as a contributor to obesity-associated insulin resistance. Clinically, resistin has also been implicated in cardiovascular disease in a number of different patient populations. Our aim was to simultaneously address these phenomena.MethodsWe generated mice with modest adipocyte-specific resistin overexpression. These mice were crossed with mice deficient in the LDL receptor (Ldlr−/−) to probe the physiological role of resistin. Both metabolic and atherosclerotic assessments were performed.ResultsResistin overexpression led to increased atherosclerotic progression in Ldlr−/− mice. This was in part related to elevated serum triacylglycerol levels and a reduced ability to clear triacylglycerol upon a challenge. Additional phenotypic changes, such as increased body weight and reduced glucose clearance, independent of the Ldlr−/− background, confirmed increased adiposity associated with a more pronounced insulin resistance. A hallmark of elevated resistin was the disproportionate increase in circulating leptin levels. These mice thus recapitulated both the proposed negative cardiovascular correlation and the insulin resistance. A unifying mechanism for this complex phenotype was a resistin-mediated central leptin resistance, which we demonstrate directly both in vivo and in organotypic brain slices. In line with reduced sympathetic nervous system outflow, we found decreased brown adipose tissue (BAT) activity. The resulting elevated triacylglycerol levels provide a likely explanation for accelerated atherosclerosis.Conclusions/interpretationResistin overexpression leads to a complex metabolic phenotype driven by resistin-mediated central leptin resistance and reduced BAT activity. Hypothalamic leptin resistance thus provides a unifying mechanism for both resistin-mediated insulin resistance and enhanced atherosclerosis.


Neuroscience | 2011

Noradrenergic projections to the ventromedial hypothalamus regulate fat metabolism during endurance exercise.

Takashi Miyaki; Teppei Fujikawa; Ryo Kitaoka; N. Hirano; Shigenobu Matsumura; Tohru Fushiki; Kazuo Inoue

The regulation of energy metabolism by the central nervous system during endurance exercise was examined. We conducted respiratory gas analysis by functionally paralyzing the ventromedial hypothalamus (VMH), the lateral hypothalamic area, and the paraventricular nucleus of the hypothalamus with local anaesthetic (lidocaine) during treadmill running at a velocity that allowed for efficient fatty acid oxidation. Our results showed that only the lidocaine treatment of the VMH attenuated fatty acid oxidation during endurance exercise. The monoaminergic neural activities at these nuclei during in vivo microdialysis in rats under the same conditions indicated a significant increase in the extracellular concentration of noradrenaline in all nuclei. Similarly, a significant increase in dopamine occurred at some points during exercise, but no change in serotonin concentration occurred regardless of exercise. Disruption of noradrenergic projections to the VMH by 6-hydroxydopamine attenuated the enhancement of fat oxidation during running. Blocker treatments clarified that noradrenergic inputs to the VMH are mediated by β-adrenoceptors. These data indicate that information about peripheral tissues status is transmitted via noradrenergic projections originating in the medulla oblongata, which may be an important contribution by the VMH and its downstream mechanisms to enhanced fatty acid oxidation during exercise.

Collaboration


Dive into the Teppei Fujikawa's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Giorgio Ramadori

University of Texas Southwestern Medical Center

View shared research outputs
Top Co-Authors

Avatar

Joel K. Elmquist

University of Texas Southwestern Medical Center

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Claudia R. Vianna

University of Texas Southwestern Medical Center

View shared research outputs
Top Co-Authors

Avatar

Eric D. Berglund

University of Texas Southwestern Medical Center

View shared research outputs
Top Co-Authors

Avatar

Jason G. Anderson

University of Texas Southwestern Medical Center

View shared research outputs
Researchain Logo
Decentralizing Knowledge