Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Teppei Shimamura is active.

Publication


Featured researches published by Teppei Shimamura.


Cancer Research | 2011

Long Noncoding RNA HOTAIR Regulates Polycomb-Dependent Chromatin Modification and Is Associated with Poor Prognosis in Colorectal Cancers

Ryunosuke Kogo; Teppei Shimamura; Koshi Mimori; Kohichi Kawahara; Seiya Imoto; Tomoya Sudo; Fumiaki Tanaka; Kohei Shibata; Akira Suzuki; Shizuo Komune; Satoru Miyano; Masaki Mori

The functional impact of recently discovered long noncoding RNAs (ncRNAs) in human cancer remains to be clarified. One long ncRNA which has attracted attention is the Hox transcript antisense intergenic RNA termed HOTAIR, a long ncRNA expressed from the developmental HOXC locus located on chromosome 12q13.13. In cooperation with Polycomb complex PRC2, the HOTAIR long ncRNA is reported to reprogram chromatin organization and promote breast cancer metastasis. In this study, we examined the status and function of HOTAIR in patients with stage IV colorectal cancer (CRC) who have liver metastases and a poor prognosis. HOTAIR expression levels were higher in cancerous tissues than in corresponding noncancerous tissues and high HOTAIR expression correlated tightly with the presence of liver metastasis. Moreover, patients with high HOTAIR expression had a relatively poorer prognosis. In a subset of 32 CRC specimens, gene set enrichment analysis using cDNA array data revealed a close correlation between expression of HOTAIR and members of the PRC2 complex (SUZ12, EZH2, and H3K27me3). Our findings suggest that HOTAIR expression is associated with a genome-wide reprogramming of PRC2 function not only in breast cancer but also in CRC, where upregulation of this long ncRNA may be a critical element in metastatic progression.


Nature Genetics | 2013

Integrated molecular analysis of clear-cell renal cell carcinoma

Yusuke Sato; Tetsuichi Yoshizato; Yuichi Shiraishi; Shigekatsu Maekawa; Yusuke Okuno; Takumi Kamura; Teppei Shimamura; Aiko Sato-Otsubo; Genta Nagae; Hiromichi Suzuki; Yasunobu Nagata; Kenichi Yoshida; Ayana Kon; Yutaka Suzuki; Kenichi Chiba; Hiroko Tanaka; Atsushi Niida; Akihiro Fujimoto; Tatsuhiko Tsunoda; Teppei Morikawa; Daichi Maeda; Haruki Kume; Sumio Sugano; Masashi Fukayama; Hiroyuki Aburatani; Masashi Sanada; Satoru Miyano; Yukio Homma; Seishi Ogawa

Clear-cell renal cell carcinoma (ccRCC) is the most prevalent kidney cancer and its molecular pathogenesis is incompletely understood. Here we report an integrated molecular study of ccRCC in which ≥100 ccRCC cases were fully analyzed by whole-genome and/or whole-exome and RNA sequencing as well as by array-based gene expression, copy number and/or methylation analyses. We identified a full spectrum of genetic lesions and analyzed gene expression and DNA methylation signatures and determined their impact on tumor behavior. Defective VHL-mediated proteolysis was a common feature of ccRCC, which was caused not only by VHL inactivation but also by new hotspot TCEB1 mutations, which abolished Elongin C–VHL binding, leading to HIF accumulation. Other newly identified pathways and components recurrently mutated in ccRCC included PI3K-AKT-mTOR signaling, the KEAP1-NRF2-CUL3 apparatus, DNA methylation, p53-related pathways and mRNA processing. This integrated molecular analysis unmasked new correlations between DNA methylation, gene mutation and/or gene expression and copy number profiles, enabling the stratification of clinical risks for patients with ccRCC.


Nature Genetics | 2015

Integrated molecular analysis of adult T cell leukemia/lymphoma

Keisuke Kataoka; Yasunobu Nagata; Akira Kitanaka; Yuichi Shiraishi; Teppei Shimamura; Jun Ichirou Yasunaga; Yasushi Totoki; Kenichi Chiba; Aiko Sato-Otsubo; Genta Nagae; Ryohei Ishii; Satsuki Muto; Shinichi Kotani; Yosaku Watatani; June Takeda; Masashi Sanada; Hiroko Tanaka; Hiromichi Suzuki; Yusuke Sato; Yusuke Shiozawa; Tetsuichi Yoshizato; Kenichi Yoshida; Hideki Makishima; Masako Iwanaga; Guangyong Ma; Kisato Nosaka; Masakatsu Hishizawa; Hidehiro Itonaga; Yoshitaka Imaizumi; Wataru Munakata

Adult T cell leukemia/lymphoma (ATL) is a peripheral T cell neoplasm of largely unknown genetic basis, associated with human T cell leukemia virus type-1 (HTLV-1) infection. Here we describe an integrated molecular study in which we performed whole-genome, exome, transcriptome and targeted resequencing, as well as array-based copy number and methylation analyses, in a total of 426 ATL cases. The identified alterations overlap significantly with the HTLV-1 Tax interactome and are highly enriched for T cell receptor–NF-κB signaling, T cell trafficking and other T cell–related pathways as well as immunosurveillance. Other notable features include a predominance of activating mutations (in PLCG1, PRKCB, CARD11, VAV1, IRF4, FYN, CCR4 and CCR7) and gene fusions (CTLA4-CD28 and ICOS-CD28). We also discovered frequent intragenic deletions involving IKZF2, CARD11 and TP73 and mutations in GATA3, HNRNPA2B1, GPR183, CSNK2A1, CSNK2B and CSNK1A1. Our findings not only provide unique insights into key molecules in T cell signaling but will also guide the development of new diagnostics and therapeutics in this intractable tumor.


Nature Genetics | 2013

Recurrent mutations in multiple components of the cohesin complex in myeloid neoplasms

Ayana Kon; Lee-Yung Shih; Masashi Minamino; Masashi Sanada; Yuichi Shiraishi; Yasunobu Nagata; Kenichi Yoshida; Yusuke Okuno; Masashige Bando; Ryuichiro Nakato; Shumpei Ishikawa; Aiko Sato-Otsubo; Genta Nagae; Aiko Nishimoto; Claudia Haferlach; Daniel Nowak; Yusuke Sato; Tamara Alpermann; Masao Nagasaki; Teppei Shimamura; Hiroko Tanaka; Kenichi Chiba; Ryo Yamamoto; Tomoyuki Yamaguchi; Makoto Otsu; Naoshi Obara; Mamiko Sakata-Yanagimoto; Tsuyoshi Nakamaki; Ken Ishiyama; Florian Nolte

Cohesin is a multimeric protein complex that is involved in the cohesion of sister chromatids, post-replicative DNA repair and transcriptional regulation. Here we report recurrent mutations and deletions involving multiple components of the cohesin complex, including STAG2, RAD21, SMC1A and SMC3, in different myeloid neoplasms. These mutations and deletions were mostly mutually exclusive and occurred in 12.1% (19/157) of acute myeloid leukemia, 8.0% (18/224) of myelodysplastic syndromes, 10.2% (9/88) of chronic myelomonocytic leukemia, 6.3% (4/64) of chronic myelogenous leukemia and 1.3% (1/77) of classical myeloproliferative neoplasms. Cohesin-mutated leukemic cells showed reduced amounts of chromatin-bound cohesin components, suggesting a substantial loss of cohesin binding sites on chromatin. The growth of leukemic cell lines harboring a mutation in RAD21 (Kasumi-1 cells) or having severely reduced expression of RAD21 and STAG2 (MOLM-13 cells) was suppressed by forced expression of wild-type RAD21 and wild-type RAD21 and STAG2, respectively. These findings suggest a role for compromised cohesin functions in myeloid leukemogenesis.


Cancer Research | 2013

Plastin3 Is a Novel Marker for Circulating Tumor Cells Undergoing the Epithelial–Mesenchymal Transition and Is Associated with Colorectal Cancer Prognosis

Takehiko Yokobori; Hisae Iinuma; Teppei Shimamura; Seiya Imoto; Keishi Sugimachi; Hideshi Ishii; Masaaki Iwatsuki; Daisuke Ota; Masahisa Ohkuma; Takeshi Iwaya; Naohiro Nishida; Ryunosuke Kogo; Tomoya Sudo; Fumiaki Tanaka; Kohei Shibata; Hiroyuki Toh; Tetsuya Sato; Graham F. Barnard; Takeo Fukagawa; Seiichiro Yamamoto; Hayao Nakanishi; Shin Ya Sasaki; Satoru Miyano; Toshiaki Watanabe; Hiroyuki Kuwano; Koshi Mimori; Klaus Pantel; Masaki Mori

Circulating tumor cells (CTC) in blood have attracted attention both as potential seeds for metastasis and as biomarkers. However, most CTC detection systems might miss epithelial-mesenchymal transition (EMT)-induced metastatic cells because detection is based on epithelial markers. First, to discover novel markers capable of detecting CTCs in which EMT has not been repressed, microarray analysis of 132 colorectal cancers (CRC) from Japanese patients was conducted, and 2,969 genes were detected that were overexpressed relative to normal colon mucosa. From the detected genes, we selected those that were overexpressed CRC with distant metastasis. Then, we analyzed the CRC metastasis-specific genes (n = 22) to determine whether they were expressed in normal circulation. As a result, PLS3 was discovered as a CTC marker that was expressed in metastatic CRC cells but not in normal circulation. Using fluorescent immunocytochemistry, we validated that PLS3 was expressed in EMT-induced CTC in peripheral blood from patients with CRC with distant metastasis. PLS3-expressing cells were detected in the peripheral blood of approximately one-third of an independent set of 711 Japanese patients with CRC. Multivariate analysis showed that PLS3-positive CTC was independently associated with prognosis in the training set (n = 381) and the validation set [n = 330; HR = 2.17; 95% confidence interval (CI) = 1.38-3.40 and HR = 3.92; 95% CI = 2.27-6.85]. The association between PLS3-positive CTC and prognosis was particularly strong in patients with Dukes B (HR = 4.07; 95% CI = 1.50-11.57) and Dukes C (HR = 2.57; 95% CI = 1.42-4.63). PLS3 is a novel marker for metastatic CRC cells, and it possesses significant prognostic value.


Molecular and Cellular Biology | 2012

Dynamic Change of Chromatin Conformation in Response to Hypoxia Enhances the Expression of GLUT3 (SLC2A3) by Cooperative Interaction of Hypoxia-Inducible Factor 1 and KDM3A

Imari Mimura; Masaomi Nangaku; Yasuharu Kanki; Shuichi Tsutsumi; Tsuyoshi Inoue; Takahide Kohro; Shogo Yamamoto; Takanori Fujita; Teppei Shimamura; Jun-ichi Suehiro; Akashi Taguchi; Mika Kobayashi; Kyoko Tanimura; Takeshi Inagaki; Toshiya Tanaka; Takao Hamakubo; Juro Sakai; Hiroyuki Aburatani; Tatsuhiko Kodama; Youichiro Wada

ABSTRACT Hypoxia-inducible factor 1 (HIF1) is a master regulator of adaptive gene expression under hypoxia. However, a role for HIF1 in the epigenetic regulation remains unknown. Genome-wide analysis of HIF1 binding sites (chromatin immunoprecipitation [ChIP] with deep sequencing) of endothelial cells clarified that HIF1 mainly binds to the intergenic regions distal from transcriptional starting sites under both normoxia and hypoxia. Next, we examined the temporal profile of gene expression under hypoxic conditions by using DNA microarrays. We clarified that early hypoxia-responsive genes are functionally associated with glycolysis, including GLUT3 (SLC2A3). Acetylated lysine 27 of histone 3 covered the HIF1 binding sites, and HIF1 functioned as an enhancer of SLC2A3 by interaction with lysine (K)-specific demethylase 3A (KDM3A). Knockdown of HIF1α and KDM3A showed that glycolytic genes are regulated by both HIF1 and KDM3A and respond to hypoxia in a manner independent of cell type specificity. We elucidated that both the chromatin conformational structure and histone modification change under hypoxic conditions and enhance the expression of SLC2A3 based on the combined results of chromatin conformation capture (3C) and ChIP assays. KDM3A is recruited to the SLC2A3 locus in an HIF1-dependent manner and demethylates H3K9me2 so as to upregulate its expression. These findings provide novel insights into the interaction between HIF1 and KDM3A and also the epigenetic regulation of HIF1.


PLOS ONE | 2013

The Tumor-Suppressive miR-497-195 Cluster Targets Multiple Cell-Cycle Regulators in Hepatocellular Carcinoma

Mayuko Furuta; Ken-ichi Kozaki; Kousuke Tanimoto; Shinji Tanaka; Shigeki Arii; Teppei Shimamura; Atsushi Niida; Satoru Miyano; Johji Inazawa

MicroRNAs (miRNAs) are key post-transcriptional regulators of gene expression and commonly deregulated in carcinogenesis. To explore functionally crucial tumor-suppressive (TS)-miRNAs in hepatocellular carcinoma (HCC), we performed integrative function- and expression-based screenings of TS-miRNAs in six HCC cell lines. The screenings identified seven miRNAs, which showed growth-suppressive activities through the overexpression of each miRNA and were endogenously downregulated in HCC cell lines. Further expression analyses using a large panel of HCC cell lines and primary tumors demonstrated four miRNAs, miR-101, -195, -378 and -497, as candidate TS-miRNAs frequently silenced in HCCs. Among them, two clustered miRNAs miR-195 and miR-497 showed significant growth-suppressive activity with induction of G1 arrest. Comprehensive exploration of their targets using Argonute2-immunoprecipitation-deep-sequencing (Ago2-IP-seq) and genome-wide expression profiling after their overexpression followed by pathway analysis, revealed a significant enrichment of cell cycle regulators. Among the candidates, we successfully identified CCNE1, CDC25A, CCND3, CDK4, and BTRC as direct targets for miR-497 and miR-195. Moreover, target genes frequently upregulated in HCC in a tumor-specific manner, such as CDK6, CCNE1, CDC25A and CDK4, showed an inverse correlation in the expression of miR-195 and miR-497, and their targets. These results suggest the molecular pathway regulating cell cycle progression to be integrally altered by downregulation of miR-195 and miR-497 expression, leading to the aberrant cell proliferation in hepatocarcinogenesis.


BMC Systems Biology | 2009

Recursive regularization for inferring gene networks from time-course gene expression profiles

Teppei Shimamura; Seiya Imoto; Rui Yamaguchi; André Fujita; Masao Nagasaki; Satoru Miyano

BackgroundInferring gene networks from time-course microarray experiments with vector autoregressive (VAR) model is the process of identifying functional associations between genes through multivariate time series. This problem can be cast as a variable selection problem in Statistics. One of the promising methods for variable selection is the elastic net proposed by Zou and Hastie (2005). However, VAR modeling with the elastic net succeeds in increasing the number of true positives while it also results in increasing the number of false positives.ResultsBy incorporating relative importance of the VAR coefficients into the elastic net, we propose a new class of regularization, called recursive elastic net, to increase the capability of the elastic net and estimate gene networks based on the VAR model. The recursive elastic net can reduce the number of false positives gradually by updating the importance. Numerical simulations and comparisons demonstrate that the proposed method succeeds in reducing the number of false positives drastically while keeping the high number of true positives in the network inference and achieves two or more times higher true discovery rate (the proportion of true positives among the selected edges) than the competing methods even when the number of time points is small. We also compared our method with various reverse-engineering algorithms on experimental data of MCF-7 breast cancer cells stimulated with two ErbB ligands, EGF and HRG.ConclusionThe recursive elastic net is a powerful tool for inferring gene networks from time-course gene expression profiles.


Cancer Research | 2013

Inhibition of Histone Demethylase JMJD1A Improves Anti-Angiogenic Therapy and Reduces Tumor-Associated Macrophages

Tsuyoshi Osawa; Rika Tsuchida; Masashi Muramatsu; Teppei Shimamura; Feng Wang; Jun-ichi Suehiro; Yasuharu Kanki; Youichiro Wada; Yasuhito Yuasa; Hiroyuki Aburatani; Satoru Miyano; Takashi Minami; Tatsuhiko Kodama; Masabumi Shibuya

Antiangiogenic strategies can be effective for cancer therapy, but like all therapies resistance poses a major clinical challenge. Hypoxia and nutrient starvation select for aggressive qualities that may render tumors resistant to antiangiogenic attack. Here, we show that hypoxia and nutrient starvation cooperate to drive tumor aggressiveness through epigenetic regulation of the histone demethylase JMJD1A (JHDM2A; KDM3A). In cancer cells rendered resistant to long-term hypoxia and nutrient starvation, we documented a stimulation of AKT phosphorylation, cell morphologic changes, cell migration, invasion, and anchorage-independent growth in culture. These qualities associated in vivo with increased angiogenesis and infiltration of macrophages into tumor tissues. Through expression microarray analysis, we identified a cluster of functional drivers such as VEGFA, FGF18, and JMJD1A, the latter which was upregulated in vitro under conditions of hypoxia and nutrient starvation and in vivo before activation of the angiogenic switch or the prerefractory phase of antiangiogenic therapy. JMJD1A inhibition suppressed tumor growth by downregulating angiogenesis and macrophage infiltration, by suppressing expression of FGF2, HGF, and ANG2. Notably, JMJD1A inhibition enhanced the antitumor effects of the anti-VEGF compound bevacizumab and the VEGFR/KDR inhibitor sunitinib. Our results form the foundation of a strategy to attack hypoxia- and nutrient starvation-resistant cancer cells as an approach to leverage antiangiogenic treatments and limit resistance to them.


PLOS ONE | 2012

Epidermal Growth Factor Receptor Tyrosine Kinase Defines Critical Prognostic Genes of Stage I Lung Adenocarcinoma

Mai Yamauchi; Rui Yamaguchi; Asuka Nakata; Takashi Kohno; Masao Nagasaki; Teppei Shimamura; Seiya Imoto; Ayumu Saito; Kazuko Ueno; Yousuke Hatanaka; Ryo Yoshida; Tomoyuki Higuchi; Masaharu Nomura; David G. Beer; Jun Yokota; Satoru Miyano; Noriko Gotoh

Purpose To identify stage I lung adenocarcinoma patients with a poor prognosis who will benefit from adjuvant therapy. Patients and Methods Whole gene expression profiles were obtained at 19 time points over a 48-hour time course from human primary lung epithelial cells that were stimulated with epidermal growth factor (EGF) in the presence or absence of a clinically used EGF receptor tyrosine kinase (RTK)-specific inhibitor, gefitinib. The data were subjected to a mathematical simulation using the State Space Model (SSM). “Gefitinib-sensitive” genes, the expressional dynamics of which were altered by addition of gefitinib, were identified. A risk scoring model was constructed to classify high- or low-risk patients based on expression signatures of 139 gefitinib-sensitive genes in lung cancer using a training data set of 253 lung adenocarcinomas of North American cohort. The predictive ability of the risk scoring model was examined in independent cohorts of surgical specimens of lung cancer. Results The risk scoring model enabled the identification of high-risk stage IA and IB cases in another North American cohort for overall survival (OS) with a hazard ratio (HR) of 7.16 (P = 0.029) and 3.26 (P = 0.0072), respectively. It also enabled the identification of high-risk stage I cases without bronchioalveolar carcinoma (BAC) histology in a Japanese cohort for OS and recurrence-free survival (RFS) with HRs of 8.79 (P = 0.001) and 3.72 (P = 0.0049), respectively. Conclusion The set of 139 gefitinib-sensitive genes includes many genes known to be involved in biological aspects of cancer phenotypes, but not known to be involved in EGF signaling. The present result strongly re-emphasizes that EGF signaling status in cancer cells underlies an aggressive phenotype of cancer cells, which is useful for the selection of early-stage lung adenocarcinoma patients with a poor prognosis. Trial Registration The Gene Expression Omnibus (GEO) GSE31210

Collaboration


Dive into the Teppei Shimamura's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge