Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Terence M. Williams is active.

Publication


Featured researches published by Terence M. Williams.


Annals of Medicine | 2004

The Caveolin genes: from cell biology to medicine.

Terence M. Williams; Michael P. Lisanti

Caveolae are vesicular organelles (50—100‐nm in diameter) that are particularly abundant in cells of the cardiovascular system, including endothelial cells, smooth muscle cells, macrophages, cardiac myocytes and fibroblasts. In these cell types, caveolae function both in protein trafficking and signal transduction, as well as in cholesterol homeostasis. Caveolins are the structural proteins that are both necessary and sufficient for the formation of caveolae membrane domains. Caveolins 1 and 2 are co‐expressed in most cell types, while the expression of caveolin‐3 is muscle‐specific. Thus, endothelial cells and fibroblasts are rich in caveolins 1 and 2, while cardiac myocytes and skeletal muscle fibers express caveolin‐3. In contrast, smooth muscle cells express all three caveolins (Cav‐1, ‐2, and ‐3). Mechanistically, caveolins interact with a variety of downstream signaling molecules, including Src‐family tyrosine kinases, p42/44 mitogen activated protein (MAP) kinase, and endothelial nitric oxide synthase (eNOS), and hold these signal transducers in the inactive conformation until activation by an appropriate stimulus. In many ways, caveolins serve both to compartmentalize and regulate signaling. Recent studies using caveolin‐deficient mouse models dramatically show that caveolae and caveolins play a prominent role in various human patho‐biological conditions, especially those related to the cardiovascular system. These disease phenotypes include: atherosclerosis, cardiac hypertrophy, cardiomyopathy, pulmonary hypertension, and neointimal hyperplasia (smooth muscle cell proliferation). In addition, caveolins play a significant role in other disease phenotypes, such as cancer, diabetes, bladder dysfunction, and muscular dystrophy, as we discuss in this review. Thus, caveolin‐deficient mice will serve as important new animal models to dissect the intricate role of caveolae and caveolins in the pathogenesis of human diseases.


Journal of Biological Chemistry | 2004

Caveolin-1 Gene Disruption Promotes Mammary Tumorigenesis and Dramatically Enhances Lung Metastasis in Vivo ROLE OF CAV-1 IN CELL INVASIVENESS AND MATRIX METALLOPROTEINASE (MMP-2/9) SECRETION

Terence M. Williams; Freddy Medina; Ines Badano; Rachel Hazan; John A. Hutchinson; William J. Muller; Neeru G. Chopra; Philipp E. Scherer; Richard G. Pestell; Michael P. Lisanti

Caveolin-1 (Cav-1) is the principal structural component of caveolae membrane domains in non-muscle cells, including mammary epithelia. There is now clear evidence that caveolin-1 influences the development of human cancers. For example, a dominant-negative mutation (P132L) in the Cav-1 gene has been detected in up to 16% of human breast cancer samples. However, the exact functional role of caveolin-1 remains controversial. Mechanistically, in cultured cell models, Cav-1 is known to function as a negative regulator of the Rasp42/44 MAP kinase cascade and as a transcriptional repressor of cyclin D1 gene expression, possibly explaining its in vitro transformation suppressor activity. Genetic validation of this hypothesis at the in vivo and whole organismal level has been prevented by the lack of a Cav-1 (-/-)-null mouse model. Here, we examined the role of caveolin-1 in mammary tumorigenesis and lung metastasis using a molecular genetic approach. We interbred a well characterized transgenic mouse model of breast cancer, MMTV-PyMT (mouse mammary tumor virus-polyoma middle T antigen), with Cav-1 (-/-)-null mice. Then, we followed the onset and progression of mammary tumors and lung metastases in female mice over a 14-week period. Interestingly, PyMT/Cav-1 (-/-) mice showed an accelerated onset of mammary tumors, with increased multiplicity and tumor burden (∼2-fold). No significant differences were detected between PyMT/Cav-1 (+/+) and PyMT/Cav-1 (+/-) mice, indicating that complete loss of caveolin-1 is required to accelerate both tumorigenesis and metastasis. Molecularly, mammary tumor samples derived from PyMT/Cav-1 (-/-) mice showed ERK-1/2 hyperactivation, cyclin D1 up-regulation, and Rb hyperphosphorylation, consistent with dys-regulated cell proliferation. PyMT/Cav-1 (-/-) mice also developed markedly advanced metastatic lung disease. Conversely, recombinant expression of Cav-1 in a highly metastatic PyMT mammary carcinoma-derived cell line, namely Met-1 cells, suppressed lung metastasis by ∼4.5-fold. In vitro, these Cav-1-expressing Met-1 cells (Met-1/Cav-1) demonstrated a ∼4.8-fold reduction in invasion through Matrigel-coated membranes. Interestingly, delivery of a cell permeable peptide encoding the caveolin-1 scaffolding domain (residues 82-101) into Met-1 cells was sufficient to inhibit invasion. Coincident with this decreased invasive index, Met-1/Cav-1 cells exhibited marked reductions in MMP-9 and MMP-2 secretion and associated gelatinolytic activity, as well as diminished ERK-1/2 signaling in response to growth factor stimulation. These results demonstrate, for the first time, that caveolin-1 is a potent suppressor of mammary tumor growth and metastasis using novel in vivo animal model approaches.


American Journal of Pathology | 2003

Absence of Caveolin-1 Sensitizes Mouse Skin to Carcinogen-Induced Epidermal Hyperplasia and Tumor Formation

Franco Capozza; Terence M. Williams; William Schubert; Steve A. McClain; Boumediene Bouzahzah; Federica Sotgia; Michael P. Lisanti

Caveolin-1 is the principal protein component of caveolae membrane domains, which are located at the cell surface in most cell types. Evidence has accumulated suggesting that caveolin-1 may function as a suppressor of cell transformation in cultured cells. The human CAV-1 gene is located at a putative tumor suppressor locus (7q31.1/D7S522) and a known fragile site (FRA7G) that is deleted in a variety of epithelial-derived tumors. Mechanistically, caveolin-1 is known to function as a negative regulator of the Ras-p42/44 MAP kinase cascade and as a transcriptional repressor of cyclin D1, possibly explaining its transformation suppressor activity in cultured cells. However, it remains unknown whether caveolin-1 functions as a tumor suppressor gene in vivo. Here, we examine the tumor suppressor function of caveolin-1 using Cav-1 (-/-) null mice as a model system. Cav-1 null mice and their wild-type counterparts were subjected to carcinogen-induced skin tumorigenesis, using 7,12-dimethylbenzanthracene (DMBA). Mice were monitored weekly for the development of tumors. We demonstrate that Cav-1 null mice are dramatically more susceptible to carcinogen-induced tumorigenesis, as they develop skin tumors at an increased rate. After 16 weeks of DMBA-treatment, Cav-1 null mice showed a 10-fold increase in tumor incidence, a 15-fold increase in tumor number per mouse (multiplicity), and a 35-fold increase in tumor area per mouse, as compared with wild-type littermate mice. Moreover, before the development of tumors, DMBA-treatment induced severe epidermal hyperplasia in Cav-1 null mice. Both the basal cell layer and the suprabasal cell layers were expanded in treated Cav-1 null mice, as evidenced by immunostaining with cell-type specific differentiation markers (keratin-10 and keratin-14). In addition, cyclin D1 and phospho-ERK1/2 levels were up-regulated during epidermal hyperplasia, suggesting a possible mechanism for the increased susceptibility of Cav-1 null mice to tumorigenesis. However, the skin of untreated Cav-1 null mice appeared normal, without any evidence of epidermal hyperplasia, despite the fact that Cav-1 null keratinocytes failed to express caveolin-1 and showed a complete ablation of caveolae formation. Thus, Cav-1 null mice require an appropriate oncogenic stimulus, such as DMBA treatment, to reveal their increased susceptibility toward epidermal hyperplasia and skin tumor formation. Our results provide the first genetic evidence that caveolin-1 indeed functions as a tumor suppressor gene in vivo.


Cancer Research | 2007

N-Cadherin Signaling Potentiates Mammary Tumor Metastasis via Enhanced Extracellular Signal-Regulated Kinase Activation

James Hulit; Kimita Suyama; Su Chung; Rinat Keren; Georgia Agiostratidou; Weisong Shan; Xinyuan Dong; Terence M. Williams; Michael P. Lisanti; Karen E. Knudsen; Rachel Hazan

N-cadherin is up-regulated in aggressive breast carcinomas, but its mechanism of action in vivo remains unknown. Transgenic mice coexpressing N-cadherin and polyomavirus middle T antigen (PyVmT) in the mammary epithelium displayed increased pulmonary metastasis, with no differences in tumor onset or growth relative to control PyVmT mice. PyVmT-N-cadherin tumors contained higher levels of phosphorylated extracellular signal-regulated kinase (ERK) and p38 mitogen-activated protein kinase (MAPK) than PyVmT controls, and phosphorylated ERK staining was further increased in pulmonary metastases. Tumor cell isolates from PyVmT-N-cadherin mice exhibited enhanced ERK activation, motility, invasion, and matrix metalloproteinase-9 (MMP-9) expression relative to PyVmT controls. MAPK/ERK kinase 1 inhibition in PyVmT-N-cadherin cells reduced MMP-9 production and invasion but not motility. Furthermore, inactivation of fibroblast growth factor receptor in PyVmT-N-cadherin cells reduced motility, invasion, and ERK activation but had no effect on PyVmT cells. Thus, de novo expression of N-cadherin in mammary ducts enhances metastasis of breast tumors via enhanced ERK signaling.


American Journal of Pathology | 2003

Caveolin-1 Knockout Mice Show an Impaired Angiogenic Response to Exogenous Stimuli

Scott E. Woodman; Anthony W. Ashton; William Schubert; Hyangkyu Lee; Terence M. Williams; Freddy Medina; Jeffrey Wyckoff; Terry P. Combs; Michael P. Lisanti

Recent studies have shown that caveolin-1 (Cav-1) plays an important role as a regulator of angiogenesis in vitro. Here, we use Cav-1 knockout (KO) mice as a model system to examine the in vivo relevance of these findings. A primary mediator of angiogenesis is basic fibroblast growth factor (bFGF). Thus, we studied bFGF-induced angiogenesis in Cav-1 KO mice using a reconstituted basement membrane system, ie, Matrigel plugs, supplemented with bFGF. In Cav-1 KO mice, implanted Matrigel plugs showed a dramatic reduction in both vessel infiltration and density, as compared with identical plugs implanted in wild-type control mice. We also examined the necessity of Cav-1 to support the angiogenic response of an exogenous tumor by subcutaneously injecting Cav-1 KO mice with the melanoma cell line, B16-F10. We show that tumor weight, volume, and vessel density are all reduced in Cav-1 KO mice, consistent with diminished angiogenesis. Ultrastructural analysis of newly formed capillaries within the exogenous tumors reveals a lack of endothelial caveolae and incomplete capillary formation in Cav-1 KO mice. These results provide novel evidence that Cav-1 and caveolae play an important positive role in the process of pathological angiogenesis in vivo.


American Journal of Pathology | 2011

Role of Cholesterol in the Development and Progression of Breast Cancer

Gemma Llaverias; Christiane Danilo; Isabelle Mercier; Kristin M. Daumer; Franco Capozza; Terence M. Williams; Federica Sotgia; Michael P. Lisanti; Philippe G. Frank

Diet and obesity are important risk factors for cancer development. Many studies have suggested an important role for several dietary nutrients in the progression and development of breast cancer. However, few studies have specifically addressed the role of components of a Western diet as important factors involved in breast cancer initiation and progression. The present study examined the role of cholesterol in the regulation of tumor progression in a mouse model of mammary tumor formation. The results suggest that cholesterol accelerates and enhances tumor formation. In addition, tumors were more aggressive, and tumor angiogenesis was enhanced. Metabolism of cholesterol was also examined in this mouse model. It was observed that plasma cholesterol levels were reduced during tumor development but not prior to its initiation. These data provide new evidence for an increased utilization of cholesterol by tumors and for its role in tumor formation. Taken together, these results imply that an increase in plasma cholesterol levels accelerates the development of tumors and exacerbates their aggressiveness.


Journal of Clinical Oncology | 2016

Extended Survival and Prognostic Factors for Patients With ALK-Rearranged Non–Small-Cell Lung Cancer and Brain Metastasis

Kimberly L. Johung; Norman Yeh; Neil Desai; Terence M. Williams; Tim Lautenschlaeger; Nils D. Arvold; Matthew S. Ning; Albert Attia; Christine M. Lovly; Sarah B. Goldberg; Kathryn Beal; James B. Yu; Brian D. Kavanagh; Veronica L. Chiang; D. Ross Camidge; Joseph N. Contessa

PURPOSE We performed a multi-institutional study to identify prognostic factors and determine outcomes for patients with ALK-rearranged non-small-cell lung cancer (NSCLC) and brain metastasis. PATIENTS AND METHODS A total of 90 patients with brain metastases from ALK-rearranged NSCLC were identified from six institutions; 84 of 90 patients received radiotherapy to the brain (stereotactic radiosurgery [SRS] or whole-brain radiotherapy [WBRT]), and 86 of 90 received tyrosine kinase inhibitor (TKI) therapy. Estimates for overall (OS) and intracranial progression-free survival were determined and clinical prognostic factors were identified by Cox proportional hazards modeling. RESULTS Median OS after development of brain metastases was 49.5 months (95% CI, 29.0 months to not reached), and median intracranial progression-free survival was 11.9 months (95% CI, 10.1 to 18.2 months). Forty-five percent of patients with follow-up had progressive brain metastases at death, and repeated interventions for brain metastases were common. Absence of extracranial metastases, Karnofsky performance score ≥ 90, and no history of TKIs before development of brain metastases were associated with improved survival (P = .003, < .001, and < .001, respectively), whereas a single brain metastasis or initial treatment with SRS versus WBRT were not (P = .633 and .666, respectively). Prognostic factors significant by multivariable analysis were used to describe four patient groups with 2-year OS estimates of 33%, 59%, 76%, and 100%, respectively (P < .001). CONCLUSION Patients with brain metastases from ALK-rearranged NSCLC treated with radiotherapy (SRS and/or WBRT) and TKIs have prolonged survival, suggesting that interventions to control intracranial disease are critical. The refinement of prognosis for this molecular subtype of NSCLC identifies a population of patients likely to benefit from first-line SRS, close CNS observation, and treatment of emergent CNS disease.


Cancer | 2013

A Multi-Institutional Phase 2 Study of Neoadjuvant Gemcitabine and Oxaliplatin With Radiation Therapy in Patients With Pancreatic Cancer

Edward J. Kim; Edgar Ben-Josef; Joseph M. Herman; Tanios Bekaii-Saab; Laura A. Dawson; Kent A. Griffith; Isaac R. Francis; Joel K. Greenson; Diane M. Simeone; Theodore S. Lawrence; Daniel A. Laheru; Christopher L. Wolfgang; Terence M. Williams; Mark Bloomston; Malcolm J. Moore; Alice Wei; Mark M. Zalupski

The purpose of this study was to evaluate preoperative treatment with full‐dose gemcitabine, oxaliplatin, and radiation therapy (RT) in patients with localized pancreatic cancer.


Infection and Immunity | 2006

Caveolin-1-Deficient Mice Show Defects in Innate Immunity and Inflammatory Immune Response during Salmonella enterica Serovar Typhimurium Infection†

Freddy Medina; Cecilia J. de Almeida; Elliott Dew; Jiangwei Li; Gloria Bonuccelli; Terence M. Williams; Alex W. Cohen; Richard G. Pestell; Philippe G. Frank; Herbert B. Tanowitz; Michael P. Lisanti

ABSTRACT A number of studies have shown an association of pathogens with caveolae. To this date, however, there are no studies showing a role for caveolin-1 in modulating immune responses against pathogens. Interestingly, expression of caveolin-1 has been shown to occur in a regulated manner in immune cells in response to lipopolysaccharide (LPS). Here, we sought to determine the role of caveolin-1 (Cav-1) expression in Salmonella pathogenesis. Cav-1−/− mice displayed a significant decrease in survival when challenged with Salmonella enterica serovar Typhimurium. Spleen and tissue burdens were significantly higher in Cav-1−/− mice. However, infection of Cav-1−/− macrophages with serovar Typhimurium did not result in differences in bacterial invasion. In addition, Cav-1−/− mice displayed increased production of inflammatory cytokines, chemokines, and nitric oxide. Regardless of this, Cav-1−/− mice were unable to control the systemic infection of Salmonella. The increased chemokine production in Cav-1−/− mice resulted in greater infiltration of neutrophils into granulomas but did not alter the number of granulomas present. This was accompanied by increased necrosis in the liver. However, Cav-1−/− macrophages displayed increased inflammatory responses and increased nitric oxide production in vitro in response to Salmonella LPS. These results show that caveolin-1 plays a key role in regulating anti-inflammatory responses in macrophages. Taken together, these data suggest that the increased production of toxic mediators from macrophages lacking caveolin-1 is likely to be responsible for the marked susceptibility of caveolin-1-deficient mice to S. enterica serovar Typhimurium.


Cell Cycle | 2005

Loss of Caveolin-1 causes the hyper-proliferation of intestinal crypt stem cells with increased sensitivity to whole body γ-radiation

Jiangwei Li; Ghada S. Hassan; Terence M. Williams; Carlo Minetti; Richard G. Pestell; Herbert B. Tanowitz; Philippe G. Frank; Federica Sotgia; Michael P. Lisanti

Caveolin-1 (Cav-1) is a protein marker for caveolae organelles, and acts as a scaffolding protein to negatively regulate the activity of signaling molecules by binding to and releasing them in a timely fashion. We have previously shown that loss of Cav-1 promotes the proliferation of mouse embryo fibroblasts (MEFs) in vitro. Here, to investigate the in vivo relevance of these findings, we evaluated the turnover rates of small intestine crypt stem cells from WT and Cav-1 deficient mice. Interestingly, we show that Cav-1 null crypt stem cells display higher proliferation rates, as judged by BrdU and PCNA staining. In addition, we show that Wnt/?-catenin signaling, which normally controls intestinal stem cell self-renewal, is up-regulated in Cav-1 deficient crypt stem cells. Because the small intestine constitutes one of the main targets of radiation, we next evaluated the role of Cav-1 in radiation-induced damage. Interestingly, after exposure to 15 Gy of ?-radiation, Cav-1 deficient mice displayed a decreased survival rate, as compared to WT mice. Our results show that after radiation treatment, Cav-1 null crypt stem cells of the small intestine exhibit far more apoptosis and accelerated proliferation, leading to a faster depletion of crypts and villi. As a consequence, six days after radiation treatment, Cav-1 -/- mice lost all their crypt and villus structures, while WT mice still showed some crypts and intact villi. In summary, we show that ablation of Cav-1 gene expression induces an abnormal amplification of crypt stem cells, resulting in increased susceptibility to ?-radiation. Thus, our studies provide the first evidence that Cav-1 normally regulates the proliferation of intestinal stem cells in vivo.

Collaboration


Dive into the Terence M. Williams's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

K.E. Haglund

The Ohio State University Wexner Medical Center

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge