Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Terence Patrick Walsh is active.

Publication


Featured researches published by Terence Patrick Walsh.


British Journal of Cancer | 2001

Kirsten ras mutations in patients with colorectal cancer: The 'RASCAL II' study

H. J. N. Andreyev; A. Norman; David Cunningham; J. Oates; B.R. Dix; Barry Iacopetta; Joanne Young; Terence Patrick Walsh; Robyn L. Ward; Nicholas J. Hawkins; M. Beranek; P. Jandik; R. Benamouzig; E. Jullian; Pierre Laurent-Puig; S. Olschwang; Oliver Müller; I. Hoffmann; H.M. Rabes; C. Zietz; C. Troungos; C. Valavanis; Siu Tsan Yuen; Jwc Ho; C.T. Croke; D. P. O'Donoghue; W. Giaretti; A. Rapallo; Antonio Russo; Viviana Bazan

Researchers worldwide with information about the Kirsten ras (Ki-ras) tumour genotype and outcome of patients with colorectal cancer were invited to provide that data in a schematized format for inclusion in a collaborative database called RASCAL (The Kirsten ras in-colorectal-cancer collaborative group). Our results from 2721 such patients have been presented previously and for the first time in any common cancer, showed conclusively that different gene mutations have different impacts on outcome, even when the mutations occur at the same site on the genome. To explore the effect of Ki-ras mutations at different stages of colorectal cancer, more patients were recruited to the database, which was reanalysed when information on 4268 patients from 42 centres in 21 countries had been entered. After predetermined exclusion criteria were applied, data on 3439 patients were entered into a multivariate analysis. This found that of the 12 possible mutations on codons 12 and 13 of Kirsten ras, only one mutation on codon 12, glycine to valine, found in 8.6% of all patients, had a statistically significant impact on failure-free survival (P = 0.004, HR 1.3) and overall survival (P = 0.008, HR 1.29). This mutation appeared to have a greater impact on outcome in Dukes’ C cancers (failure-free survival, P = 0.008, HR 1.5; overall survival P = 0.02, HR 1.45) than in Dukes’ B tumours (failure-free survival, P = 0.46, HR 1.12; overall survival P = 0.36, HR 1.15). Ki-ras mutations may occur early in the development of pre-cancerous adenomas in the colon and rectum. However, this collaborative study suggests that not only is the presence of a codon 12 glycine to valine mutation important for cancer progression but also that it may predispose to more aggressive biological behaviour in patients with advanced colorectal cancer.


FEBS Letters | 2007

The temperature activated HtrA protease from pathogen Chlamydia trachomatis acts as both a chaperone and protease at 37 °C

Wilhelmina M. Huston; Joaquim E. Swedberg; Jonathan M. Harris; Terence Patrick Walsh; Sarah A. Mathews; Peter Timms

Characterization of the protease, HtrA, from pathogen Chlamydia trachomatis is presented. The purified recombinant protein was a serine endoprotease, specific for unfolded proteins, and temperature activated above 34 °C. Chaperone activity was observed, although this appeared target‐dependent. Inactive protease (S247A) was able to chaperone insulin B‐chain, irrespective of temperature, but at 30 °C only HtrA and not S247A displayed significant chaperone activity for α‐lactalbumin. These data demonstrate that chaperone activity may involve functional protease domain and that C. trachomatis HtrA functions as both a chaperone and protease at 37 °C. These properties are consistent with the developmental cycle of this obligate intracellular bacterium.


Applied and Environmental Microbiology | 2004

Identification and Characterization of the Novel LysM Domain-Containing Surface Protein Sep from Lactobacillus fermentum BR11 and Its Use as a Peptide Fusion Partner in Lactobacillus and Lactococcus

Mark S. Turner; Louise M. Hafner; Terence Patrick Walsh; Philip M. Giffard

ABSTRACT Examination of supernatant fractions from broth cultures of Lactobacillus fermentum BR11 revealed the presence of a number of proteins, including a 27-kDa protein termed Sep. The amino-terminal sequence of Sep was determined, and the gene encoding it was cloned and sequenced. Sep is a 205-amino-acid protein and contains a 30-amino-acid secretion signal and has overall homology (between 39 and 92% identity) with similarly sized proteins of Lactobacillus reuteri, Enterococcus faecium, Streptococcus pneumoniae, Streptococcus agalactiae, and Lactobacillus plantarum. The carboxy-terminal 81 amino acids of Sep also have strong homology (86% identity) to the carboxy termini of the aggregation-promoting factor (APF) surface proteins of Lactobacillus gasseri and Lactobacillus johnsonii. The mature amino terminus of Sep contains a putative peptidoglycan-binding LysM domain, thereby making it distinct from APF proteins. We have identified a common motif within LysM domains that is shared with carbohydrate binding YG motifs which are found in streptococcal glucan-binding proteins and glucosyltransferases. Sep was investigated as a heterologous peptide expression vector in L. fermentum, Lactobacillus rhamnosus GG and Lactococcus lactis MG1363. Modified Sep containing an amino-terminal six-histidine epitope was found associated with the cells but was largely present in the supernatant in the L. fermentum, L. rhamnosus, and L. lactis hosts. Sep as well as the previously described surface protein BspA were used to express and secrete in L. fermentum or L. rhamnosus a fragment of human E-cadherin, which contains the receptor region for Listeria monocytogenes. This study demonstrates that Sep has potential for heterologous protein expression and export in lactic acid bacteria.


Applied and Environmental Microbiology | 2003

Peptide surface display and secretion using two LPXTG-containing surface proteins from Lactobacillus fermentum BR11.

Mark S. Turner; Louise M. Hafner; Terence Patrick Walsh; Philip M. Giffard

ABSTRACT A locus encoding two repetitive proteins that have LPXTG cell wall anchoring signals from Lactobacillus fermentum BR11 has been identified by using an antiserum raised against whole L. fermentum BR11 cells. The first protein, Rlp, is similar to the Rib surface protein from Streptococcus agalactiae, while the other protein, Mlp, is similar to the mucus binding protein Mub from Lactobacillus reuteri. It was shown that multiple copies of mlp exist in the genome of L. fermentum BR11. Regions of Rlp, Mlp, and the previously characterized surface protein BspA were used to surface display or secrete heterologous peptides in L. fermentum. The peptides tested were 10 amino acids of the human cystic fibrosis transmembrane regulator protein and a six-histidine epitope (His6). The BspA promoter and secretion signal were used in combination with the Rlp cell wall sorting signal to express, export, and covalently anchor the heterologous peptides to the cell wall. Detection of the cell surface protein fusions revealed that Rlp was a significantly better surface display vector than BspA despite having lower cellular levels (0.7 mg per liter for the Rlp fusion compared with 4 mg per liter for the BspA fusion). The mlp promoter and encoded secretion signal were used to express and export large (328-kDa at 10 mg per liter) and small (27-kDa at 0.06 mg per liter) amino-terminal fragments of the Mlp protein fused to the His6 and CFTR peptides or His6 peptide, respectively. Therefore, these newly described proteins from L. fermentum BR11 have potential as protein production and targeting vectors.


Fems Microbiology Letters | 2003

Cystine uptake prevents production of hydrogen peroxide by Lactobacillus fermentum BR11.

Jacky Hung; Dee Cooper; Mark S. Turner; Terence Patrick Walsh; Philip M. Giffard

BspA is an abundant surface protein from Lactobacillus fermentum BR11, and is required for normal cystine uptake. In previous studies, a mutant strain deficient in BspA (L. fermentum PNG201) was found to be sensitive to oxidative stress. In this study, the biochemical basis for this was explored. It was found that under aerobic batch culture conditions in de Mann-Rogosa-Sharpe medium, both L. fermentum BR11 and PNG201 entered stationary phase due to hydrogen peroxide accumulation. However, this took place at a lower optical density for PNG201 than for BR11. Measurements of hydrogen peroxide levels revealed that the BspA mutant strain overproduces this compound. Addition of 6 mM cystine to aerobic cultures was found to prevent hydrogen peroxide production by both the BR11 and PNG201 strains, but lower cystine concentrations depressed hydrogen peroxide production in BR11 more efficiently than in PNG201. Each mole of cystine was able to prevent the production of several moles of hydrogen peroxide by L. fermentum BR11, suggesting that hydrogen peroxide breakdown is dependent upon a thiol that cycles between reduced and oxidized states. It was concluded that peroxide breakdown by L. fermentum BR11 is dependent upon exogenous cystine. It is most probable that the imported L-cystine is catabolized by a cystathionine lyase and then converted into a thiol reductant for a peroxidase.


Blood Coagulation & Fibrinolysis | 1997

Use of first nucleotide change technology to determine the frequency of factor V Leiden in a population of Australian blood donors.

N. M. Pecheniuk; N. A. Marsh; Terence Patrick Walsh; J. L. Dale

Activated protein C resistance (APCR), the most common risk factor for venous thrombosis, is the result of a G to A base substitution at nucleotide 1691 (R506Q) in the factor V gene. Current techniques to detect the factor V Leiden mutation, such as determination of restriction length polymorphisms, do not have the capacity to screen large numbers of samples in a rapid, cost-effective test. The aim of this study was to apply the first nucleotide change (FNC) technology, to the detection of the factor V Leiden mutation. After preliminary amplification of genomic DNA by polymerase chain reaction (PCR), an allele-specific primer was hybridised to the PCR product and extended using fluorescent terminating dideoxynucleotides which were detected by colorimetric assay. Using this ELISA-based assay, the prevalence of the factor V Leiden mutation was determined in an Australian blood donor population (n = 500). A total of 18 heterozygotes were identified (3.6%) and all of these were confirmed with conventional MnlI restriction digest. No homozygotes for the variant allele were detected. We conclude from this study that the frequency of 3.6% is compatible with others published for Caucasian populations. In addition, the FNC technology shows promise as the basis for a rapid, automated DNA based test for factor V Leiden.


Journal of Bacteriology | 2009

Cystathionine gamma-lyase is a component of cystine-mediated oxidative defense in Lactobacillus reuteri BR11.

Raquel Lo; Mark S. Turner; Daniel G. Barry; Revathy Sreekumar; Terence Patrick Walsh; Philip M. Giffard

Lactobacillus reuteri BR11 possesses a novel mechanism of oxidative defense involving an abundant cystine ABC transporter encoded by the cyuABC gene cluster. Large amounts of thiols, including H(2)S, are secreted upon cystine uptake by the CyuC transporter. A cystathionine gamma-lyase (cgl) gene is cotranscribed with the cyu genes in several L. reuteri strains and was hypothesized to participate in cystine-mediated oxidative defense by producing reducing equivalents. This hypothesis was tested with L. reuteri BR11 by constructing a cgl mutant (PNG901) and comparing it to a similarly constructed cyuC mutant (PNG902). Although Cgl was required for H(2)S production from cystine, it was not crucial for oxidative defense in de Mann-Rogosa-Sharpe medium, in contrast to CyuC, whose inactivation resulted in lag-phase arrest in aerated cultures. The importance of Cgl in oxidative defense was seen only in the presence of hemin, which poses severe oxidative stress. The growth defects in aerated cultures of both mutants were alleviated by supplementation with cysteine (and cystine in the cgl mutant) but not methionine, with the cyuC mutant showing a much higher concentration requirement. We conclude that L. reuteri BR11 requires a high concentration of exogenous cysteine/cystine to grow optimally under aerobic conditions. This requirement is fulfilled by the abundant CyuC transporter, which has probably arisen due to the broad substrate specificity of Cgl, resulting in a futile pathway which degrades cystine taken up by the CyuC transporter to H(2)S. Cgl plays a secondary role in oxidative defense by its well-documented function of cysteine biosynthesis.


Blood Coagulation & Fibrinolysis | 2001

The factor V HR2 haplotype: prevalence and association of the A4070G and A6755G polymorphisms.

N. M. Pecheniuk; C. P. Morris; Terence Patrick Walsh; N. A. Marsh

Recently, a polymorphism was identified in exon 25 of the factor V gene that is possibly a functional candidate for the HR2 haplotype. This haplotype is characterized by a single base substitution named R2 (A4070G) in the B domain of the protein. A mutation (A6755G; 2194Asp←Gly) located near the C terminus has been hypothesized to influence protein folding and glycosylation, and might be responsible for the shift in factor V isoform (FV1 / FV2) ratio. This study investigated the prevalence of these two factor V HR2 haplotype polymorphisms in a cohort of normal blood donors, patients with osteoarthritis and women with complications during pregnancy, and in families of factor V Leiden individuals. A high allele frequency for the two polymorphisms was found in the blood donor group (6.2% R2, 5.6% A6755G). No significant difference in allele frequency was observed in the clinical groups (obstetric complications and osteoarthritis, 4.1–4.9% for the two polymorphisms) when compared with that of healthy blood donors. We confirm that the factor V A6755G polymorphism shows strong linkage to the R2 allele, although it is not exclusively inherited with the exon 13 A4070G variant and can occur independently.


Blood Coagulation & Fibrinolysis | 2000

Multiple analysis of three common genetic alterations associated with thrombophilia

N. M. Pecheniuk; N. A. Marsh; Terence Patrick Walsh

We have previously reported the use of a novel mini-sequencing protocol for detection of the factor V Leiden variant, the first nucleotide change (FNC) technology. This technology is based on a single nucleotide extension of a primer, which is hybridized immediately adjacent to the site of mutation. The extended nucleotide that carries a reporter molecule (fluorescein) has the power to discriminate the genotype at the site of mutation. More recently, the prothrombin 20210 and thermolabile methylene tetrahydrofolate reductase (MTHFR) 677 variants have been identified as possible risk factors associated with thrombophilia. This study describes the use of the FNC technology in a combined assay to detect factor V, prothrombin and MTHFR variants in a population of Australian blood donors, and describes the objective numerical methodology used to determine genotype cut-off values for each genetic variation. Using FNC to test 500 normal blood donors, the incidence of Factor V Leiden was 3.6% (all heterozygous), that of prothrombin 20210 was 2.8% (all heterozygous) and that of MTHFR was 10% (homozygous). The combined FNC technology offers a simple, rapid, automatable DNA-based test for the detection of these three important mutations that are associated with familial thrombophilia.


Fems Microbiology Letters | 2004

Identification, characterisation and specificity of a cell wall lytic enzyme from Lactobacillus fermentum BR11

Mark S. Turner; Louise M. Hafner; Terence Patrick Walsh; Philip M. Giffard

Screening of a genomic library with an antiserum raised against whole Lactobacillus fermentum BR11 cells identified a clone expressing an immunoreactive 37-kDa protein. Analysis of the 3010-bp DNA insert contained within the clone revealed four open reading frames (ORFs). One ORF encodes LysA, a 303 amino acid protein which has up to 35% identity with putative endolysins from prophages Lj928 and Lj965 from Lactobacillus johnsonii and Lp1 and Lp2 from Lactobacillus plantarum as well as with the endolysin of Lactobacillus gasseri bacteriophage Phiadh. The immunoreactive protein was shown to be encoded by a truncated ORF downstream of lysA which has similarity to glutamyl-tRNA synthetases. The N-terminus of LysA has sequence similarity with N-acetylmuramidase catalytic domains while the C-terminus has sequence similarity with putative cell envelope binding bacterial SH3b domains. C-terminal bacterial SH3b domains were identified in the majority of Lactobacillus bacteriophage endolysins. LysA was expressed in Escherichia coli and unusually was found to have a broad bacteriolytic activity range with activity against a number of different Lactobacillus species and against Lactococcus lactis, streptococci and Staphylococcus aureus. It was found that LysA is 2 and 8000 times more active against L. fermentum than L. lactis and Streptococcus pyogenes, respectively.

Collaboration


Dive into the Terence Patrick Walsh's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

N. M. Pecheniuk

Scripps Research Institute

View shared research outputs
Top Co-Authors

Avatar

Mark S. Turner

University of Queensland

View shared research outputs
Top Co-Authors

Avatar

Peter Timms

University of the Sunshine Coast

View shared research outputs
Top Co-Authors

Avatar

Jonathan M. Harris

Queensland University of Technology

View shared research outputs
Top Co-Authors

Avatar

Louise M. Hafner

Queensland University of Technology

View shared research outputs
Top Co-Authors

Avatar

Elizabeth C. Jazwinska

QIMR Berghofer Medical Research Institute

View shared research outputs
Top Co-Authors

Avatar

Judith A. Clements

Queensland University of Technology

View shared research outputs
Top Co-Authors

Avatar

Lara M. Cullen

QIMR Berghofer Medical Research Institute

View shared research outputs
Top Co-Authors

Avatar

Lawrie W. Powell

QIMR Berghofer Medical Research Institute

View shared research outputs
Researchain Logo
Decentralizing Knowledge