Teresa Aguilar
University of Cádiz
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Teresa Aguilar.
ChemPhysChem | 2014
Desireé M. de los Santos; Teresa Aguilar; Antonio Sánchez-Coronilla; Javier Navas; Norge Cruz Hernández; Rodrigo Alcántara; Concha Fernández-Lorenzo; Joaquín Martín-Calleja
This study presents the experimental and theoretical study of highly internally Al-doped TiO2 nanoparticles. Two synthesis methods were used and detailed characterization was performed. There were differences in the doping and the crystallinity, but the nanoparticles synthesized with the different methods share common features. Anatase to rutile transformation occurred at higher temperatures with Al doping. X-ray photoelectron spectroscopy showed the generation of oxygen vacancies, which is an interesting feature in photocatalysis. In turn, the band-gap energy and the valence band did not change appreciably. Periodic density functional calculations were performed to model the experimentally doped structures, the formation of the oxygen vacancies, and the band gap. Calculation of the density of states confirmed the experimental band-gap energies. The theoretical results confirmed the presence of Ti(4+) and Al(3+) . The charge density study and electron localization function analysis indicated that the inclusion of Al in the anatase structure resulted in a strengthening of the TiO bonds around the vacancy.
Beilstein Journal of Nanotechnology | 2015
Desiré De los Santos; Javier Navas; Teresa Aguilar; Antonio Sánchez-Coronilla; Concha Fernández-Lorenzo; Rodrigo Alcántara; Jose Carlos Piñero; Ginesa Blanco; Joaquín Martín-Calleja
Summary Tm-doped TiO2 nanoparticles were synthesized using a water-controlled hydrolysis reaction. Analysis was performed in order to determine the influence of the dopant concentration and annealing temperature on the phase, crystallinity, and electronic and optical properties of the resulting material. Various characterization techniques were utilized such as X-ray diffraction, Raman spectroscopy, X-ray photoelectron spectroscopy and UV–vis spectroscopy. For the samples annealed at 773 and 973 K, anatase phase TiO2 was obtained, predominantly internally doped with Tm3+. ICP–AES showed that a doping concentration of up to 5.8 atom % was obtained without reducing the crystallinity of the samples. The presence of Tm3+ was confirmed by X-ray photoelectron spectroscopy and UV–vis spectroscopy: the incorporation of Tm3+ was confirmed by the generation of new absorption bands that could be assigned to Tm3+ transitions. Furthermore, when the samples were annealed at 1173 K, a pyrochlore phase (Tm2Ti2O7) mixed with TiO2 was obtained with a predominant rutile phase. The photodegradation of methylene blue showed that this pyrochlore phase enhanced the photocatalytic activity of the rutile phase.
Journal of Materials Chemistry | 2017
Roberto Gómez-Villarejo; Javier Navas; Elisa I. Martín; Antonio Sánchez-Coronilla; Teresa Aguilar; Juan Jesús Gallardo; Desiré De los Santos; Rodrigo Alcántara; Concha Fernández-Lorenzo; Joaquín Martín-Calleja
This paper presents the preparation of Au nanoparticles in a non-polar medium, which is a fluid composed of the eutectic mixture of biphenyl and diphenyl oxide commonly used in Concentrating Solar Power (CSP) plants. The nanofluids prepared showed enhanced thermal properties, presenting thermal conductivity values 70% higher than those of base fluids, and isobaric specific heat values up to 10% higher. In turn, an increase of up to 36% was observed in their heat transfer coefficient, which is their efficiency as a heat transfer fluid (HTF). Also, the stability of the nanofluids was analysed using UV-vis spectroscopy, and particle size and ζ potential. The nanofluids with lower concentrations agglomerate slowly, which is considered stable for this application. Thus, these nanofluids are a promising, interesting alternative to the HTF often used in CSP plants. Also, molecular dynamics calculations were performed to better understand how the Au-nanofluid behaves in the presence of a surfactant within a temperature range between 50 and 600 K. The isobaric specific heat and thermal conductivity values followed the same experimental tendency. The analysis of the radial distribution functions (RDFs) and spatial distribution functions (SDFs) showed that, as the temperature rose, an exchange took place between the surfactant and diphenyl oxide molecules in the first layer of molecules around the metal. This movement incorporated a directionality that may play a part in the enhanced thermal properties. The surfactant participates as an active component within the Au-nanofluid, contributing to efficient heat transfer processes.
Journal of Physics D | 2015
Teresa Aguilar; Javier Navas; Desireé M. de los Santos; Antonio Sánchez-Coronilla; Concha Fernández-Lorenzo; Rodrigo Alcántara; Juan Jesús Gallardo; Ginesa Blanco; Joaquín Martín-Calleja
This study presents the use of TiO2 nanoparticles with Tm as photoelectrodes in DSSCs. The nanoparticles were annealed at 1173 K and the predominant TiO2 phase was rutile. XRD and Raman spectroscopy revealed the presence of a crystalline pyrochlore phase of the mixed oxide Tm2Ti2O7. In turn, XPS confirmed the presence of Ti4+ and Tm3+, so the inclusion of Tm did not affect the oxidation state of the Ti. UV–Vis spectra showed that the presence of the pyrochlore phase led to new electronic states in the band gap. The use of the pyrochlore phase in the photoelectrode had a positive effect, improving the efficiency of the pure TiO2 cells. The efficiency increased by between 2.32% and 3.16% when pure TiO2 was replaced with a mixture of rutile TiO2 and pyrochlore Tm2Ti2O7, so the controlled use of a pyrochlore phase can produce good results in dye-sensitized solar cells. Another important effect of the pyrochlore phase was to increase the open-circuit voltage values by around 7% and can be explained by the flat band voltage values. The samples with Tm showed two flat band voltage values, which generated two possible electronic injection mechanisms in the cells.
Review of Scientific Instruments | 2012
Juan Jesús Gallardo; Javier Navas; Rodrigo Alcántara; Concha Fernández-Lorenzo; Teresa Aguilar; Joaquín Martín-Calleja
This paper presents a non-conventional methodology and an instrumental system to measure the effect of temperature on the photovoltaic properties of solar cells. The system enables the direct measurement of the evolution of open-circuit voltage and short-circuit current intensity in relation to a continuously decreasing temperature. The system uses a high-intensity white light-emitting diode light source with low emissions of radiation in the infrared region of the electromagnetic spectrum, resulting in a reduced heating of the photovoltaic devices by the irradiation source itself. To check the goodness of the system and the methodology designed, several measurements were performed with monocrystalline silicon solar cells, dye-sensitized solar cells, and thin-film amorphous silicon solar cells, showing similar tendencies to those reported in the literature.
ChemPhysChem | 2017
Antonio Sánchez-Coronilla; Javier Navas; Teresa Aguilar; Elisa I. Martín; Juan Jesús Gallardo; Roberto Gómez-Villarejo; Iván Carrillo-Berdugo; Rodrigo Alcántara; Concha Fernández-Lorenzo; Joaquín Martín-Calleja
This study shows an analysis of the stability of nanofluids based on a eutectic mixture of diphenyl oxide and biphenyl, which is used as a heat transfer fluid (HTF) in concentrating solar energy, and NiO nanoparticles. Two surfactants are used to analyse the stability of the nanofluids: benzalkonium chloride (BAC) and 1-octadecanethiol (ODT). From an experimental perspective, the stability is analysed by means of UV/Vis spectroscopy, particle size measurements through the dynamic light-scattering technique, and ζ-potential measurements. The results show that the stability of the nanofluids improves with the use of BAC. DFT calculations are performed to understand the role played by the surfactants. The interaction of the surfactants with both the fluid and the NiO (100) surface is studied. Quantum theory of atoms in molecules (QTAIM) analysis shows that hydrogen bridge interactions favour the stability of the fluid-surfactant mixture. The more stabilising NiO-surfactant interaction involves the Ni-H interaction of the -SH and -CH3 groups of ODT and BAC. Also, nanofluids with BAC are favoured over those with ODT, which is in agreement with experimental results. The structural and electronic effects of incorporating the surfactant onto the NiO (100) surface are shown by using electron localisation function analysis, the non-covalent interaction index and projected density of states.
Water Science and Technology | 2018
Desireé M. de los Santos; Sara Chahid; Rodrigo Alcántara; Javier Navas; Teresa Aguilar; Juan Jesús Gallardo; Roberto Gómez-Villarejo; Iván Carrillo-Berdugo; Concha Fernández-Lorenzo
Photodegradation processes are of great interest in a range of applications, one of which is the photodecomposition of pollutants. For this reason, analysing nanoparticles that improve the efficiency of these processes under solar radiation are very necessary. Thus, in this study, TiO2 was doped with Mo and Cu using low-temperature hydrolysis as the method of synthesis. Pure TiO2 and x%MoS2/Cu/TiO2 nanoparticles were prepared, where x is the theoretical quantity of MoS2 added (0.0%, 1.0%, 5.5%, 10.0%), setting the nominal quantity of Cu at 0.5 wt.%. The samples obtained were characterized by X-ray diffraction, Raman spectroscopy, X-ray electron spectroscopy and UV-Vis spectroscopy in diffuse reflectance mode. The results suggest that the TiO2 structure was doped with the Mo6+ and Cu2+ ions in the position of the Ti4+. The x%MoS2/Cu/TiO2 samples presented lower band gap energy values and greater optical absorption in the visible region than the pure TiO2 sample. Lastly, the photocatalytic activity of the samples was assessed by means of the photodegradation of methylene blue under visible light. The results show that when the quantity of Mo in the co-doped samples increased (x%MoS2/Cu/TiO2) there were significant increases of up to 93% in the photocatalytic activity.
Nanomaterials | 2018
Teresa Aguilar; Iván Carrillo-Berdugo; Roberto Gómez-Villarejo; Juan Jesús Gallardo; Paloma Martínez-Merino; José Castro Piñero; Rodrigo Alcántara; Concha Fernández-Lorenzo; Javier Navas
Nanofluids are systems with several interesting heat transfer applications, but it can be a challenge to obtain highly stable suspensions. One way to overcome this challenge is to create the appropriate conditions to disperse the nanomaterial in the fluid. However, when the heat transfer fluid used is a non-polar organic oil, there are complications due to the low polarity of this solvent. Therefore, this study introduces a method to synthesize TiO2 nanoparticles inside a non-polar fluid typically used in heat transfer applications. Nanoparticles produced were characterized for their structural and chemical properties using techniques such as X-ray Diffraction (XRD), Raman spectroscopy, Transmission Electron Microscopy (TEM), Fourier Transform Infrared (FTIR) spectroscopy, and X-ray photoelectron spectroscopy (XPS). The nanofluid showed a high stability, which was analyzed by means of UV-vis spectroscopy and by measuring its particle size and ζ potential. So, this nanofluid will have many possible applications. In this work, the use as heat transfer fluid was tested. In this sense, nanofluid also presented enhanced isobaric specific heat and thermal conductivity values with regard to the base fluid, which led to the heat transfer coefficient increasing by 14.4%. Thus, the nanofluid prepared could be a promising alternative to typical HTFs thanks to its improved thermal properties and high stability resulting from the synthesis procedure.
Journal of Materials Chemistry | 2018
Javier Navas; Paloma Martínez-Merino; Antonio Sánchez-Coronilla; Juan Jesús Gallardo; Rodrigo Alcántara; Elisa I. Martín; José Castro Piñero; Juan R. León; Teresa Aguilar; José Hidalgo Toledo; Concha Fernández-Lorenzo
The nano-colloidal suspension of nanomaterials in a base fluid, typically named a nanofluid, is a promising system that shows interesting properties, such as those related to heat transfer processes. Obtaining nanofluids with high stability is a priority challenge for this kind of system. So, a rationalization of the preparation of nanofluids is clearly needed. Thus, this study presents a methodology based on liquid phase exfoliation that makes it possible to prepare stable nanofluids and control the morphology of the nanostructures, which is defined by the surfactant used. Two stable nanofluids were prepared based on MoS2 nanosheets and MoS2 nanowires and a typical heat transfer fluid (HTF) used in high temperature applications. Periodic-Density Functional Theory (periodic-DFT) calculations were performed to rationalize why different nanostructures were obtained according to the surfactant used. Finally, enhancements in thermal properties were found, being up to 57% for thermal conductivity and up to 7.5% for isobaric specific heat. Therefore, these nanofluids are a promising alternative to the typical HTF used, which is a eutectic mixture of biphenyl and diphenyl oxide. Also, to our knowledge, controlling the nanostructures obtained and the rationalization of the methodology for the preparation of stable nanofluids is reported for the first time. This leads to highly stable nanofluids with improved thermal properties, promising for application in concentrating solar power.
euro mediterranean conference | 2017
Chérif Moslah; Teresa Aguilar; Mohamed Ksibi; Rodrigo Alcántara; Javier Navas
XRD reveals that the doping delays the transition Anatase to Rutile to high temperature. XRD pattern of 5%W-TiO2 treated at 900 °C exhibits the appearance of new phase (H). Photocatalytic study shows an important activity in visible light of doped samples thermally treated at 700 and 900 °C. Appearing new phase enhances the photocatalytic reactivity of Rutile in visible light. The percentage of doping affects the photocatalytic activity.