Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Teresa C. Chen is active.

Publication


Featured researches published by Teresa C. Chen.


Proceedings of the National Academy of Sciences of the United States of America | 2003

Biologic activity of cytotoxic T lymphocyte-associated antigen 4 antibody blockade in previously vaccinated metastatic melanoma and ovarian carcinoma patients

F. Stephen Hodi; Martin C. Mihm; Robert J. Soiffer; Frank G. Haluska; Marcus O. Butler; Michael V. Seiden; Thomas A. Davis; Rochele Henry-Spires; Suzanne MacRae; Ann Willman; Robert F. Padera; Michael T. Jaklitsch; Sridhar Shankar; Teresa C. Chen; Alan J. Korman; James P. Allison; Glenn Dranoff

A large number of cancer-associated gene products evoke immune recognition, but host reactions rarely impede disease progression. The weak immunogenicity of nascent tumors contributes to this failure in host defense. Therapeutic vaccines that enhance dendritic cell presentation of cancer antigens increase specific cellular and humoral responses, thereby effectuating tumor destruction in some cases. The attenuation of T cell activation by cytotoxic T lymphocyte-associated antigen 4 (CTLA-4) further limits the potency of tumor immunity. In murine systems, the administration of antibodies that block CTLA-4 function inhibits the growth of moderately immunogenic tumors and, in combination with cancer vaccines, increases the rejection of poorly immunogenic tumors, albeit with a loss of tolerance to normal differentiation antigens. To gain a preliminary assessment of the biologic activity of antagonizing CTLA-4 function in humans, we infused a CTLA-4 blocking antibody (MDX-CTLA4) into nine previously immunized advanced cancer patients. MDX-CTLA4 stimulated extensive tumor necrosis with lymphocyte and granulocyte infiltrates in three of three metastatic melanoma patients and the reduction or stabilization of CA-125 levels in two of two metastatic ovarian carcinoma patients previously vaccinated with irradiated, autologous granulocyte–macrophage colony-stimulating factor-secreting tumor cells. MDX-CTLA4 did not elicit tumor necrosis in four of four metastatic melanoma patients previously immunized with defined melanosomal antigens. No serious toxicities directly attributable to the antibody were observed, although five of seven melanoma patients developed T cell reactivity to normal melanocytes. These findings suggest that CTLA-4 antibody blockade increases tumor immunity in some previously vaccinated cancer patients.


Optics Letters | 2004

In vivo human retinal imaging by ultrahigh-speed spectral domain optical coherence tomography

Nader Nassif; Barry Cense; B. Hyle Park; Seok Hyun Yun; Teresa C. Chen; Brett E. Bouma; Guillermo J. Tearney; Johannes F. de Boer

An ultrahigh-speed spectral domain optical coherence tomography (SD-OCT) system is presented that achieves acquisition rates of 29,300 depth profiles/s. The sensitivity of SD-OCT and time domain OCT (TD-OCT) are experimentally compared, demonstrating a 21.7-dB improvement of SD-OCT over TD-OCT. In vivo images of the human retina are presented, demonstrating the ability to acquire high-quality structural images with an axial resolution of 6 microm at ultrahigh speed and with an ocular exposure level of less than 600 microW.


Proceedings of the National Academy of Sciences of the United States of America | 2008

Immunologic and clinical effects of antibody blockade of cytotoxic T lymphocyte-associated antigen 4 in previously vaccinated cancer patients

F. Stephen Hodi; Marcus O. Butler; Darryl A. Oble; Michael V. Seiden; Frank G. Haluska; Andrea Kruse; Suzanne MacRae; Marybeth Nelson; Christine Canning; Israel Lowy; Alan J. Korman; David B. Lautz; Sara Russell; Michael T. Jaklitsch; Nikhil H. Ramaiya; Teresa C. Chen; Donna Neuberg; James P. Allison; Martin C. Mihm; Glenn Dranoff

Cytotoxic T lymphocyte-associated antigen 4 (CTLA-4) functions as a negative regulator of endogenous and vaccine-induced antitumor immunity. The administration of fully human anti-CTLA-4 blocking monoclonal antibodies to advanced-cancer patients increases immune-mediated tumor destruction in some subjects. Nonetheless, patients that respond also frequently manifest serious inflammatory pathologies, raising the possibility that the therapeutic and toxic effects of CTLA-4 blockade might be linked. Here we show that periodic infusions of anti-CTLA-4 antibodies after vaccination with irradiated, autologous tumor cells engineered to secrete GM-CSF (GVAX) generate clinically meaningful antitumor immunity without grade 3 or 4 toxicity in a majority of metastatic melanoma patients. The application of this sequential immunotherapy to advanced ovarian carcinoma patients also revealed that tumor destruction and severe inflammatory pathology could be dissociated, although further refinements are required to increase clinical responses and to minimize toxicity in this population. The extent of therapy-induced tumor necrosis was linearly related to the natural logarithm of the ratio of intratumoral CD8+ effector T cells to FoxP3+ regulatory T cells (Tregs) in posttreatment biopsies. Together, these findings help clarify the immunologic and clinical effects of CTLA-4 antibody blockade in previously vaccinated patients and raise the possibility that selective targeting of antitumor Tregs may constitute a complementary strategy for combination therapy.


Optics Express | 2004

Ultrahigh-resolution high-speed retinal imaging using spectral-domain optical coherence tomography

Barry Cense; Nader Nassif; Teresa C. Chen; Mark C. Pierce; Seok Hyun Yun; Boris Hyle Park; Brett E. Bouma; Guillermo J. Tearney; J. F. de Boer

We present the first ultrahigh-resolution optical coherence tomography (OCT) structural intensity images and movies of the human retina in vivo at 29.3 frames per second with 500 A-lines per frame. Data was acquired at a continuous rate of 29,300 spectra per second with a 98% duty cycle. Two consecutive spectra were coherently summed to improve sensitivity, resulting in an effective rate of 14,600 A-lines per second at an effective integration time of 68 micros. The turn-key source was a combination of two super luminescent diodes with a combined spectral width of more than 150 nm providing 4.5 mW of power. The spectrometer of the spectraldomain OCT (SD-OCT) setup was centered around 885 nm with a bandwidth of 145 nm. The effective bandwidth in the eye was limited to approximately 100 nm due to increased absorption of wavelengths above 920 nm in the vitreous. Comparing the performance of our ultrahighresolution SD-OCT system with a conventional high-resolution time domain OCT system, the A-line rate of the spectral-domain OCT system was 59 times higher at a 5.4 dB lower sensitivity. With use of a software based dispersion compensation scheme, coherence length broadening due to dispersion mismatch between sample and reference arms was minimized. The coherence length measured from a mirror in air was equal to 4.0 microm (n= 1). The coherence length determined from the specular reflection of the foveal umbo in vivo in a healthy human eye was equal to 3.5 microm (n = 1.38). With this new system, two layers at the location of the retinal pigmented epithelium seem to be present, as well as small features in the inner and outer plexiform layers, which are believed to be small blood vessels. ?2004 Optical Society of America.


Journal of Biomedical Optics | 2004

In vivo birefringence and thickness measurements of the human retinal nerve fiber layer using polarization-sensitive optical coherence tomography.

Barry Cense; Teresa C. Chen; B. Hyle Park; Mark C. Pierce; Johannes F. de Boer

Glaucoma causes damage of the nerve fiber layer, which may cause loss of retinal birefringence. Therefore, PS-OCT is a potentially useful technique for the early detection of glaucoma. We built a fiber-based PS-OCT setup that produces real-time images of the human retina in vivo, coregistered with retinal video images of the location of PS-OCT scans. Preliminary measurements of a healthy volunteer show that the double-pass phase retardation per unit of depth of the RNFL is not constant and varies with location, with values between 0.18 and 0.37 deg/microm. A trend in the preliminary measurements shows that the nerve fiber layer located inferior and superior to the optic nerve head is more birefringent than the thinner layer of nerve fiber tissue in the temporal and nasal regions.


Optics Express | 2005

Retinal nerve fiber layer thickness map determined from optical coherence tomography images

Mircea Mujat; Raymond Chan; Barry Cense; B. Hyle Park; Chulmin Joo; Taner Akkin; Teresa C. Chen; Johannes F. de Boer

We introduce a method to determine the retinal nerve fiber layer (RNFL) thickness in OCT images based on anisotropic noise suppression and deformable splines. Spectral-Domain Optical Coherence Tomography (SDOCT) data was acquired at 29 kHz A-line rate with a depth resolution of 2.6 mum and a depth range of 1.6 mm. Areas of 9.6x6.4 mm2 and 6.4x6.4 mm2 were acquired in approximately 6 seconds. The deformable spline algorithm determined the vitreous-RNFL and RNFL-ganglion cell/inner plexiform layer boundary, respectively, based on changes in the reflectivity, resulting in a quantitative estimation of the RNFL thickness. The thickness map was combined with an integrated reflectance map of the retina and a typical OCT movie to facilitate clinical interpretation of the OCT data. Large area maps of RNFL thickness will permit better longitudinal evaluation of RNFL thinning in glaucoma.


Journal of Glaucoma | 2013

Analysis of normal retinal nerve fiber layer thickness by age, sex, and race using spectral domain optical coherence tomography.

Tarek Alasil; Kathy S. Wang; P.A. Keane; Hang Lee; Neda Baniasadi; J. F. de Boer; Teresa C. Chen

Purpose:To determine the effects of age, sex, and race on the retinal nerve fiber layer (RNFL) in the normal human eye as measured by the spectral domain optical coherence tomography (SD-OCT) Spectralis machine (Heidelberg Engineering). Methods:Peripapillary SD-OCT RNFL thickness measurements were determined in normal subjects seen at a university-based clinic. One randomly selected eye per subject was used for analysis in this cross-sectional study. Multiple regression analysis was applied to assess the effects of age, sex, ethnicity, and mean refractive error on peripapillary RNFL thickness. Results are expressed as means±SD wherever applicable. Results:The study population consisted of 190 healthy participants from 9 to 86 years of age. Of the 190 participants, 62 (33%) were men, 125 (66%) Caucasians, 26 (14%) African Americans, 14 (7%) Hispanics, 16 (8%) Asians, and 9 (5%) other races. The mean RNFL thickness for the normal population studied was 97.3±9.6 µm. Normal RNFL thickness values follow the ISNT rule with decreasing RNFL thickness values starting from the thickest quadrant inferiorly to the thinnest quadrant temporally: inferior quadrant (126±15.8), superior quadrant (117.2±16.13), nasal quadrant (75±13.9), and temporal quadrant (70.6±10.8 µm). Thinner RNFL measurements were associated with older age (P<0.001); being Caucasian, versus being either Hispanic or Asian (P=0.02 and 0.009, respectively); or being more myopic (P<0.001). For every decade of increased age, mean RNFL thickness measured thinner by approximately 1.5 µm (95% confidence interval, 0.24-0.07). Comparisons between ethnic groups revealed that Caucasians had mean RNFL values (96±9.2 µm) slightly thinner than those of Hispanics (102.9±11 µm; P=0.02) or Asians (100.7±8.5 µm; P=0.009). African Americans RNFL values (99.2±10.2 µm) were not significantly different when compared with Caucasians. There was no relationship between RNFL thickness and sex. Conclusions:The thickest RNFL measurements were found in the inferior quadrant, followed by the superior, nasal, and temporal quadrants (ISNT rule applied to the RNFL). Thinner RNFL measurements were associated with older age and increasing myopia. Caucasians tend to have thinner RNFL values when compared with Hispanics and Asians. SD-OCT analysis of the normal RNFL showed results similar to time domain OCT studies.


Journal of Biomedical Optics | 2007

Autocalibration of spectral-domain optical coherence tomography spectrometers for in vivo quantitative retinal nerve fiber layer birefringence determination

Mircea Mujat; B. Hyle Park; Barry Cense; Teresa C. Chen; Johannes F. de Boer

Accurate wavelength assignment of each spectral element for spectral-domain optical coherence tomography (SD-OCT) and optical frequency domain imaging (OFDI) is required for proper construction of biological tissue cross-sectional images. This becomes more critical for functional extensions of these techniques, especially in polarization-sensitive optical coherence tomography (PS-OCT), where incorrect wavelength assignment between the two orthogonal polarization channels leads to polarization artifacts. We present an autocalibration method for wavelength assignment that does not require separate calibration measurements and that can be applied directly on actual data. Removal of the birefringence artifact is demonstrated in a PS-OCT system with picometer accuracy in the relative wavelength assignment, resulting in a residual phase error of 0.25 deg/100 microm. We also demonstrate, for the first time, a quantitative birefringence map of an in vivo human retinal nerve fiber layer.


Journal of Glaucoma | 2010

Reproducibility of Retinal Nerve Fiber Layer Thickness Measurements Using Spectral Domain Optical Coherence Tomography

Huijuan Wu; Johannes F. de Boer; Teresa C. Chen

PurposeTo evaluate the reproducibility of the peripapillary retinal nerve fiber layer (RNFL) thickness measurements obtained by Spectralis spectral domain optical coherence tomography (OCT) (Heidelberg Engineering, Heidelberg, Germany) in normal and glaucoma participants. MethodsParticipants were recruited from a university-based clinic. Peripapillary RNFL thickness measurements were repeated 3 times during the same visit using the follow-up function. One eye of each participant was randomly selected for statistical analysis. Reproducibility was evaluated using within-subject standard deviation (Sw), coefficient of variation (CV), and intraclass correlation coefficient (ICC). Spearman rank correlation coefficient analyses were used to assess the correlation of the standard deviation of the 3 measurements for each participant with the RNFL thickness value. ResultsForty-five normal participants and 33 glaucoma patients were included in the study. The CVs ranged from 1.45% [overall global (G)] to 2.59% [temporal quadrant (T)] in normal eyes and from 1.74% (G) to 3.22% (T) in the glaucomatous eyes. ICCs ranged from 0.977 (T) to 0.990 (G and inferior-nasal sector) in normal eyes and from 0.983 (T) to 0.997 (inferior quadrant) in glaucomatous eyes. Sw were from 1.34 &mgr;m (G) to 2.39 &mgr;m (superior-temporal and inferior-temporal sectors) in normal eyes and from 1.14 &mgr;m (G) to 2.25 &mgr;m (superior-nasal sector) in the glaucomatous eyes. There were no significant correlations between RNFL thickness values and the measurement variability for each participant. ConclusionsSpectralis OCT shows excellent reproducibility for measuring the peripapillary RNFL thickness values in both healthy and glaucoma participants.


British Journal of Ophthalmology | 2009

Spectral domain optical coherence tomography for quantitative evaluation of drusen and associated structural changes in non-neovascular age-related macular degeneration

Kayoung Yi; Mircea Mujat; Boris Hyle Park; Wei Sun; Joan W. Miller; Johanna M. Seddon; L H Young; J F de Boer; Teresa C. Chen

Background/aims: To demonstrate how spectral domain optical coherence tomography (SDOCT) can better evaluate drusen and associated anatomical changes in eyes with non-neovascular age-related macular degeneration (AMD) compared with time domain optical coherence tomography (TDOCT). Methods: Images were obtained from three eyes of three patients with AMD using an experimental SDOCT system. Both a titanium–sapphire (Ti:sapphire) laser and a superluminescent diode (SLD) were used as a broadband light source to achieve cross-sectional images of the retina. A qualitative and quantitative analysis was performed for structural changes associated with non-neovascular AMD. An automated algorithm was developed to analyse drusen area and volume from SDOCT images. TDOCT was performed using the fast macular scan (StratusOCT, Carl Zeiss Meditec, Dublin, California). Results: SDOCT images can demonstrate structural changes associated with non-neovascular AMD. A new SDOCT algorithm can determine drusen area, drusen volume and proportion of drusen. Conclusions: With new algorithms to determine drusen area and volume and its unprecedented simultaneous ultra-high speed ultra-high resolution imaging, SDOCT can improve the evaluation of structural abnormalities in non-neovascular AMD.

Collaboration


Dive into the Teresa C. Chen's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Barry Cense

Indiana University Bloomington

View shared research outputs
Top Co-Authors

Avatar

Edem Tsikata

Massachusetts Eye and Ear Infirmary

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

B. Hyle Park

University of California

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Christian J. Que

Massachusetts Eye and Ear Infirmary

View shared research outputs
Researchain Logo
Decentralizing Knowledge