Teresa Cristina Zangirolami
Federal University of São Carlos
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Teresa Cristina Zangirolami.
Bioresource Technology | 2012
F. M. Cunha; Mateus Esperança; Teresa Cristina Zangirolami; Alberto C. Badino; Cristiane Sanchez Farinas
Sequential solid-state and submerged cultivation with sugarcane bagasse as substrate for cellulase production by Aspergillus niger A12 was assessed by measuring endoglucanase activity. An unconventional pre-culture with an initial fungal growth phase under solid-state cultivation was followed by a transition to submerged fermentation by adding the liquid culture medium to the mycelium grown on solid substrate. For comparison, control experiments were conducted using conventional submerged cultivation. The cultures were carried out in shake flasks and in a 5-L bubble column bioreactor. An endoglucanase productivity of 57 ± 13 IU/L/h was achieved in bubble column cultivations prepared using the new method, representing an approximately 3-fold improvement compared to conventional submerged fermentation. Therefore, the methodology proposed here of a sequential fermentation process offers a promising alternative for cellulase production.
Brazilian Journal of Microbiology | 2014
Adilson José da Silva; Teresa Cristina Zangirolami; Maria Teresa Marques Novo-Mansur; Roberto C. Giordano; Elizabeth A. L. Martins
Genetically attenuated microorganisms, pathogens, and some commensal bacteria can be engineered to deliver recombinant heterologous antigens to stimulate the host immune system, while still offering good levels of safety. A key feature of these live vectors is their capacity to stimulate mucosal as well as humoral and/or cellular systemic immunity. This enables the use of different forms of vaccination to prevent pathogen colonization of mucosal tissues, the front door for many infectious agents. Furthermore, delivery of DNA vaccines and immune system stimulatory molecules, such as cytokines, can be achieved using these special carriers, whose adjuvant properties and, sometimes, invasive capacities enhance the immune response. More recently, the unique features and versatility of these vectors have also been exploited to develop anti-cancer vaccines, where tumor-associated antigens, cytokines, and DNA or RNA molecules are delivered. Different strategies and genetic tools are constantly being developed, increasing the antigenic potential of agents delivered by these systems, opening fresh perspectives for the deployment of vehicles for new purposes. Here we summarize the main characteristics of the different types of live bacterial vectors and discuss new applications of these delivery systems in the field of vaccinology.
Journal of Industrial Microbiology & Biotechnology | 2008
Mickie Takagi; Rodrigo Barbosa Lima; Silvia Maria Ferreira Albani; Teresa Cristina Zangirolami; Martha M. Tanizaki; Joaquin Cabrera-Crespo
Haemophilus influenzae type b, an encapsulated bacterium, causes meningitis in infants worldwide. The capsular polysaccharide conjugated to a carrier protein is effective in the prevention of such infections. The traditional purification process of polysaccharide from bacterial cultures for vaccine production is based on several selective precipitations with solvents such as: ethanol, phenol, and cationic detergents. The separations of solid and liquid phases are based on continuous centrifugation in explosion proof installations. The lipopolysaccharides are separated by ultracentrifugation. A simple and efficient method that can easily be scaled-up was developed for purification of polysaccharides. The ethanol precipitation was reduced to only two steps. The phenol treatment was substituted by ultrafiltration and enzymatic digestion. Lipopolysaccharide was removed by ultrafiltration together with addition of detergent and chelating agent.
Enzyme and Microbial Technology | 2012
C.R. Silva; Teresa Cristina Zangirolami; J.P. Rodrigues; K. Matugi; Raquel de Lima Camargo Giordano; R.L.C. Giordano
The use of the hemicellulose fraction of biomass may be important for the feasibility of the production of second generation bioethanol. Wild strains of Saccharomyces cerevisiae are widely used in industry for production of 1st generation ethanol, and the robustness of this yeast is an important advantage in large scale applications. Isomerization of xylose to xylulose is an essential step in this process. This reaction is catalyzed by glucose isomerase (GI). A new biocatalyst is presented here for the simultaneous isomerization and fermentation (SIF) of xylose. GI from Streptomyces rubiginosus was immobilized in chitosan, through crosslinking with glutaraldehyde, and the support containing the immobilized GI (IGI-Ch) was co-immobilized with S. cerevisiae, in calcium alginate gel. The immobilization experiments led to high immobilized protein loads (30-68 mg × g(support)(-1)), high yields (circa of 100%) and high recovered enzyme activity (>90%). The IGI-Ch derivative with maximum activity presented 1700 IU × g(catalyst)(-1), almost twice the activity of a commercial immobilized GI, GENSWEET(®) IGI-HF. At typical operational conditions for xylose SIF operation (pH 5, 30-35 °C, presence of nutrients and ethanol concentrations in the medium up to 70 L(-1)), both derivatives, IGI-Ch and GENSWEET(®) IGI-HF retained app. 90% of the initial activity after 120 h, while soluble GI was almost completely inactive at pH 5, 30 °C. The isomerization xylose/xylulose, catalyzed by IGI-Ch, reached the equilibrium in batch experiments after 4h, with 12,000 IU × L(-1) (7 g(der) × L(-1)), at pH 5 and 30 °C, in the presence of fermentation nutrients. After co-immobilization of IGI-Ch with yeast in alginate gel, this biocatalyst succeeded in producing 12 g × L(-1) of ethanol, 9.5 g × L(-1) of xylitol, 2.5 g × L(-1) of glycerol and 1.9 g × L(-1) of acetate after consumption of 50 g × L(-1) of xylose, in 48 h, using 32.5 × 10(3) IU × L(-1) and 20 g(yeast) × L(-1), at 35 °C and initial pH 5.3.
Protein Expression and Purification | 2013
Ana Maria Abreu Velez; Antônio Carlos Luperni Horta; Adilson José da Silva; Mônica Rosas da Costa Iemma; Raquel de Lima Camargo Giordano; Teresa Cristina Zangirolami
Thermostable microbial lipases are potential candidates for industrial applications such as specialty organic syntheses as well as hydrolysis of fats and oils. In this work, basic biochemical engineering tools were applied to enhance the production of BTL2 lipase cloned in Escherichia coli BL321 under control of the strong temperature-inducible λP(L) promoter. Initially, surface response analysis was used to assess the influence of growth and induction temperatures on enzyme production, in flask experiments. The results showed that temperatures of 30 and 45°C were the most suitable for growth and induction, respectively, and led to an enzyme specific activity of 706,000 U/gDCW. The most promising induction conditions previously identified were validated in fed-batch cultivation, carried out in a 2L bioreactor. Specific enzyme activity reached 770,000 U/gDCW, corresponding to 13,000 U/L of culture medium and a lipase protein concentration of 10.8 g/L. This superior performance on enzyme production was a consequence of the improved response of λP(L) promoter triggered by the high induction temperature applied (45°C). These results point out to the importance of taking into account protein structure and stability to adequately design the recombinant protein production strategy for thermally induced promoters.
Biotechnology and Bioprocess Engineering | 2012
F. M. Cunha; A. L. G. Bacchin; A. C. L. Horta; Teresa Cristina Zangirolami; Alberto C. Badino; Cristiane Sanchez Farinas
A process that combines the advantages of solid state fermentation (SSF) and submerged fermentation (SmF) could increase the efficiency of cellulase production required in the cellulosic ethanol industry. Due to the difficulty of measuring cellular biomass in the presence of solids, we developed a novel methodology for indirect quantification of biomass during production of the preculture for a combined fermentation process. Cultivation of Aspergillus niger was initiated as SSF using sugar cane bagasse as a solid substrate. Experiments were conducted in the absence of bagasse to determine growth kinetic parameters. Changes in glucose and biomass concentrations were measured. and the data were used for simulation employing a simple unstructured model. Parameters were estimated by applying a combination of Simulated Annealing (SA) and Levenberg-Marquardt (LM) algorithms to search for minimization of the error between model estimates and experimental data. Growth kinetics followed the Contois model, with a maximum specific growth rate (μmax) of 0.042/h, a yield coefficient for biomass formation (Yx/s) of 0.30 g/g and a death constant (kD) of 0.005/h.These parameters were used to simulate cellular growth in the solids-containing medium. The proposed model accurately described the experimental data and succeeded in simulating the cell concentration profile. The selected pre-culture conditions (24 h as SSF followed by 48 h as SmF) were applied for cellulase production using the combined fermentation process and resulted in an endoglucanase activity (1,052 ± 34 U/L) greater than that obtained using the conventional SmF procedure (824 ± 44 U/L). Besides the standardization of pre-culture conditions, this methodology could be very useful in systems where direct measurement of cell mass is not possible.
Applied Biochemistry and Biotechnology | 2003
Mickie Takagi; Joaquin Cabrera-Crespo; Júlia Baruque-Ramos; Teresa Cristina Zangirolami; Isaias Raw; Martha M. Tanizaki
Haemophilus influenzae type b (Hib) causes invasive infections in infants and young children. Vaccines consisting of Hib capsular polysaccharide (polymer of ribosylribitol phosphate [PRP]) conjugated to a protein are effective in the prevention of such infections. The production of capsular polysaccharide type b was studied in three cultivation conditions: single, glucose pulse, and repeated batch. Specific polysaccharide production (Yp/x) was calculated for all experiments, showing the following values: 67 (single-batch cultivation), 71 (glucose pulse), 75 (repeated-batch cultivation, first batch), and 87 mg of PRP/g of dry cell weight (DCW) (repeated-batch cultivation, second batch). Biomass concentration reached ∼1.8 g of DCW/L, while polysaccharide concentration was about ∼132 mg/L in the three fermentation runs. Polysaccharide synthesis is associated with cell growth in all studied conditions as established by Konos analysis and Luedeking-Pirets model.
Electronic Journal of Biotechnology | 2007
Kamilla Swiech; Gracinda Marina Castelo da Silva; Teresa Cristina Zangirolami; Mônica Rosas da Costa Iemma; Heloisa S. Selistre-de-Araujo; Claudio Alberto Torres Suazo
We present kinetic and physiological data regarding the culturing of rCHO-K1 cells on various microcarriers, to evaluate the potential of this culture strategy for mass production of these cells and expression of a recombinant disintegrin. Cultures were performed in 500 mL spinner flasks in DMEM culture medium with 10% v/v fetal calf serum, gently shaken at 37oC, pH 7.4, in a 10% v/v CO 2 atmosphere. The following values were obtained, respectively, for the adhesion time-constant Ka (h) and specific growth rate μ max (d -1 ) on each microcarrier: Cytodex 1 (0.91, 0.45), Cultispher S (0.28, 0.34), Immobasil FS (0.85, 0.52) and Pronectin F (5.12, 0.67). Metabolic characteristics showed some variation among the cultures with the four microcarriers, the most significant being the higher production of ammonia with microcarriers coated with adhesive molecules (Cultispher S and Pronectin F) relative to the uncoated carriers (Cytodex 1 and Immobasil FS). Experiments where the DMEM medium was gradually replaced by the serum-free medium (CHO-SFM-II) revealed important advantages over media containing serum, not only for assay purposes, but also for purification of the disintegrin. Altogether these results demonstrate that cultures on microcarriers, especially on Pronectin F, show good potential for larger scale cultures of rCHO-K1 cell.
Bioprocess and Biosystems Engineering | 2011
Antônio Carlos Luperni Horta; Adilson José da Silva; Cintia Regina Sargo; Viviane Maimoni Gonçalves; Teresa Cristina Zangirolami; Roberto C. Giordano
One of the most important events in fed-batch fermentations is the definition of the moment to start the feeding. This paper presents a methodology for a rational selection of the architecture of an artificial intelligence (AI) system, based on a neural network committee (NNC), which identifies the end of the batch phase. The AI system was successfully used during high cell density cultivations of recombinant Escherichia coli. The AI algorithm was validated for different systems, expressing three antigens to be used in human and animal vaccines: fragments of surface proteins of Streptococcus pneumoniae (PspA), clades 1 and 3, and of Erysipelothrix rhusiopathiae (SpaA). Standard feed-forward neural networks (NNs), with a single hidden layer, were the basis for the NNC. The NN architecture with best performance had the following inputs: stirrer speed, inlet air, and oxygen flow rates, carbon dioxide evolution rate, and CO2 molar fraction in the exhaust gas.
Biotechnology Progress | 2015
Cintia Regina Sargo; Gilson Campani; Gabriel Gonçalves Silva; Roberto C. Giordano; Adilson José da Silva; Teresa Cristina Zangirolami; Daniela M. Correia; E. C. Ferreira; Isabel Rocha
Live attenuated strains of Salmonella typhimurium have been extensively investigated as vaccines for a number of infectious diseases. However, there is still little information available concerning aspects of their metabolism. S. typhimurium and Escherichia coli show a high degree of similarity in terms of their genome contents and metabolic networks. However, this work presents experimental evidence showing that significant differences exist in their abilities to direct carbon fluxes to biomass and energy production. It is important to study the metabolism of Salmonella to elucidate the formation of acetate and other metabolites involved in optimizing the production of biomass, essential for the development of recombinant vaccines. The metabolism of Salmonella under aerobic conditions was assessed using continuous cultures performed at dilution rates ranging from 0.1 to 0.67 h−1, with glucose as main substrate. Acetate assimilation and glucose metabolism under anaerobic conditions were also investigated using batch cultures. Chemostat cultivations showed deviation of carbon towards acetate formation, starting at dilution rates above 0.1 h−1. This differed from previous findings for E. coli, where acetate accumulation was only detected at dilution rates exceeding 0.4 h−1, and was due to the lower rate of acetate assimilation by S. typhimurium under aerobic conditions. Under anaerobic conditions, both microorganisms mainly produced ethanol, acetate, and formate. A genome‐scale metabolic model, reconstructed for Salmonella based on an E. coli model, provided a poor description of the mixed fermentation pattern observed during Salmonella cultures, reinforcing the different patterns of carbon utilization exhibited by these closely related bacteria.