Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Teresa F. Moura is active.

Publication


Featured researches published by Teresa F. Moura.


PLOS ONE | 2012

Targeting aquaporin function: potent inhibition of aquaglyceroporin-3 by a gold-based compound

Ana Paula Martins; Alessandro Marrone; Antonella Ciancetta; Ana Galán Cobo; Miriam Echevarría; Teresa F. Moura; Nazzareno Re; Angela Casini; Graça Soveral

Aquaporins (AQPs) are membrane channels that conduct water and small solutes such as glycerol and are involved in many physiological functions. Aquaporin-based modulator drugs are predicted to be of broad potential utility in the treatment of several diseases. Until today few AQP inhibitors have been described as suitable candidates for clinical development. Here we report on the potent inhibition of AQP3 channels by gold(III) complexes screened on human red blood cells (hRBC) and AQP3-transfected PC12 cells by a stopped-flow method. Among the various metal compounds tested, Auphen is the most active on AQP3 (IC50 = 0.8±0.08 µM in hRBC). Interestingly, the compound poorly affects the water permeability of AQP1. The mechanism of gold inhibition is related to the ability of Au(III) to interact with sulphydryls groups of proteins such as the thiolates of cysteine residues. Additional DFT and modeling studies on possible gold compound/AQP adducts provide a tentative description of the system at a molecular level. The mapping of the periplasmic surface of an homology model of human AQP3 evidenced the thiol group of Cys40 as a likely candidate for binding to gold(III) complexes. Moreover, the investigation of non-covalent binding of Au complexes by docking approaches revealed their preferential binding to AQP3 with respect to AQP1. The high selectivity and low concentration dependent inhibitory effect of Auphen (in the nanomolar range) together with its high water solubility makes the compound a suitable drug lead for future in vivo studies. These results may present novel metal-based scaffolds for AQP drug development.


Obesity | 2014

Human aquaporin-11 is a water and glycerol channel and localizes in the vicinity of lipid droplets in human adipocytes

Ana Madeira; Sonia Fernández-Veledo; Marta Camps; Antonio Zorzano; Teresa F. Moura; Victòria Ceperuelo-Mallafré; Joan Vendrell; Graça Soveral

For a long time Aquaporin‐7 has been the only aquaporin associated with the adipose tissue, and its dysregulation has been linked to the underlying mechanisms of obesity. However, the presence of alternative glycerol channels within the adipose tissue has been postulated, which has prompted us to the search of alternate glycerol transport routes in adipocytes. In view of this, it is hypothesized that Aquaporin‐11 (AQP11) would have a role in adipocyte cell biology.


The Journal of Membrane Biology | 1984

Thermodynamics of all-or-none water channel closure in red cells.

Teresa F. Moura; Robert I. Macey; David Y. Chien; Daniel M. Karan; Helena Santos

SummaryThe relation of osmotic to diffusional water permeability of human red blood cells was compared after treating the cells with different concentrations of PCMBS (p-chloromercuribenzene sulfonate). After subtracting the PCMBS-insensitive permeability (presumably the water permeability of the lipid bilayer) from each, the ratio of osmotic to diffusional permeability remains invariant (≈11) as more and more water channels are inhibited by increasing concentrations of PCMBS. This result implies that the channels close in an all-or-none way and suggests a two-state model. Analysis of the dependence of osmotic water permeability on PCMBS concentration in terms of the model reveals a 1∶1 stoichiometry and a dissociation constant for the PCMBS/membrane receptor complex of about 0.019mm at 37°C. Temperature dependence studies show that the reaction is entropically driven (ΔHo≈25 kcal/mol, ΔSo≈100 cal/moldeg) and suggest the involvement of hydrophobic interactions.


Marine and Freshwater Research | 2008

Molecular barcoding of north-east Atlantic deep-water sharks: species identification and application to fisheries management and conservation

Teresa F. Moura; Mónica C. Silva; Ivone Figueiredo; Ana Neves; Pablo Durán Muñoz; M. M. Coelho; Leonel Serrano Gordo

Two genera of elasmobranchii, Centrophorus and Centroscymnus, include species that represent the highest landings of deep-water sharks caught by fishing fleets operating in the north-east Atlantic. There are morphology-based identification problems among and within genera, and landings of processed shark products further prevent an objective assessment of these species. The present study is the first attempt to test the suitability of using a DNA barcode approach to discriminate accurately among the four most important commercial deep-water shark species: Centrophorus squamosus, Centrophorus granulosus, Centroscymnus coelolepis and, recently discovered in Portuguese ports, Centroscymnus owstoni. Sequence analyses of the mitochondrial DNA cytochrome c oxidase subunit I (COI) gene revealed low levels of haplotypic and genetic diversities. Higher levels of inter-specific relative to intra-specific divergences allowed discrimination among species, which form reciprocally monophyletic clades. Inclusion of published COI sequences from other species within the same genera revealed haplotype sharing among species, which calls into question the current taxonomy and accuracy of fisheries data available. Amplification of the COI gene coupled with MboI restriction digests was found to be a fast and inexpensive strategy to resolve within genera identification problems. Molecular barcoding constitutes a critical tool for the assessment and implementation of urgent management policies for this group of species.


Biochimica et Biophysica Acta | 2008

Membrane tension regulates water transport in yeast

Graça Soveral; Ana Madeira; Maria C. Loureiro-Dias; Teresa F. Moura

Evidence that membrane surface tension regulates water fluxes in intact cells of a Saccharomyces cerevisiae strain overexpressing aquaporin AQY1 was obtained by assessing the osmotic water transport parameters in cells equilibrated in different osmolarities. The osmotic water permeability coefficients (P(f)) obtained for yeast cells overexpressing AQY1 incubated in low osmolarity buffers were similar to those obtained for a double mutant aqy1aqy2 and approximately three times lower (with higher activation energy, E(a)) than values obtained for cells incubated in higher osmolarities (with lower E(a)). Moreover, the initial inner volumes attained a maximum value for cells equilibrated in lower osmolarities (below 0.75 M) suggesting a pre-swollen state with the membrane under tension, independent of aquaporin expression. In this situation, the impairment of water channel activity suggested by lower P(f) and higher E(a) could probably be the first available volume regulatory tool that, in cooperation with other osmosensitive solute transporters, aims to maintain cell volume. The results presented point to the regulation of yeast water channels by membrane tension, as previously described in other cell systems.


Cellular and Molecular Life Sciences | 2015

Aquaglyceroporins: implications in adipose biology and obesity

Ana Madeira; Teresa F. Moura; Graça Soveral

Aquaporins (AQPs) are membrane water/glycerol channels that are involved in many physiological processes. Their primary function is to facilitate the bidirectional transfer of water and small solutes across biological membranes in response to osmotic gradients. Aquaglyceroporins, a subset of the AQP family, are the only mammalian proteins with the ability to permeate glycerol. For a long time, AQP7 has been the only aquaglyceroporin associated with the adipose tissue, which is the major source of circulating glycerol in response to the energy demand. AQP7 dysregulation was positively correlated with obesity onset and adipocyte glycerol permeation through AQP7 was appointed as a novel regulator of adipocyte metabolism and whole-body fat mass. Recently, AQP3, AQP9, AQP10 and AQP11 were additionally identified in human adipocytes and proposed as additional glycerol pathways in these cells. This review contextualizes the importance of aquaglyceroporins in adipose tissue biology and highlights aquaglyceroporins’ unique structural features which are relevant for the design of effective therapeutic compounds. We also refer to the latest advances in the identification and characterization of novel aquaporin isoforms in adipose tissue. Finally, considerations on the actual progress of aquaporin research and its implications on obesity therapy are suggested.


PLOS ONE | 2012

Grapevine Aquaporins: Gating of a Tonoplast Intrinsic Protein (TIP2;1) by Cytosolic pH

Luís Leitão; Catarina Prista; Teresa F. Moura; Maria C. Loureiro-Dias; Graça Soveral

Grapevine (Vitis vinifera L.) is one of the oldest and most important perennial crops being considered as a fruit ligneous tree model system in which the water status appears crucial for high fruit and wine quality, controlling productivity and alcohol level. V. vinifera genome contains 28 genes coding for aquaporins, which acting in a concerted and regulated manner appear relevant for plant withstanding extremely unfavorable drought conditions essential for the quality of berries and wine. Several Vv aquaporins have been reported to be expressed in roots, shoots, berries and leaves with clear cultivar differences in their expression level, making their in vivo biochemical characterization a difficult task. In this work V. vinifera cv. Touriga nacional VvTnPIP1;1, VvTnPIP2;2 and VvTnTIP2;1 were expressed in yeast and water transport activity was characterized in intact cells of the transformants. The three aquaporins were localized in the yeast plasma membrane but only VvTnTIP2;1 expression enhanced the water permeability with a concomitant decrease of the activation energy of water transport. Acidification of yeast cytosol resulted in loss of VvTnTIP2;1 activity. Sequence analysis revealed the presence of a His131 residue, unusual in TIPs. By site directed mutagenesis, replacement of this residue by aspartic acid or alanine resulted in loss of pHin dependence while replacement by lysine resulted in total loss of activity. In addition to characterization of VvTn aquaporins, these results shed light on the gating of a specific tonoplast aquaporin by cytosolic pH.


Journal of Cellular Physiology | 2014

Functional Inhibition of Aquaporin-3 With a Gold-Based Compound Induces Blockage of Cell Proliferation

Ana Serna; Ana Galán-Cobo; Claudia Rodrigues; Ismael Sánchez-Gomar; Juan José Toledo-Aral; Teresa F. Moura; Angela Casini; Graça Soveral; Miriam Echevarría

AQP3 has been correlated with higher transport of glycerol, increment of ATP content, and larger proliferation capacity. Recently, we described the gold(III) complex Auphen as a very selective and potent inhibitor of AQP3s glycerol permeability (Pgly). Here we evaluated Auphen effect on the proliferation of various mammalian cell lines differing in AQP3 expression level: no expression (PC12), moderate (NIH/3T3) or high (A431) endogenous expression, cells stably expressing AQP3 (PC12‐AQP3), and human HEK293T cells transiently transfected (HEK‐AQP3) for AQP3 expression. Proliferation was evaluated in the absence or presence of Auphen (5 μM) by counting number of viable cells and analyzing 5‐bromo‐2′‐deoxyuridine (BrdU) incorporation. Auphen reduced ≈50% the proliferation in A431 and PC12‐AQP3, ≈15% in HEK‐AQP3 and had no effect in PC12‐wt and NIH/3T3. Strong arrest in the S‐G2/M phases of the cell cycle, supported by analysis of cyclins (A, B1, D1, E) levels, was observed in AQP3‐expressing cells treated with Auphen. Flow‐cytometry of propidium iodide incorporation and measurements of mitochondrial dehydrogenases activity confirmed absence of cytotoxic effect of the drug. Functional studies evidenced ≈50% inhibition of A431 Pgly by Auphen, showing that the compound’s antiproliferative effect correlates with its ability to inhibit AQP3 Pgly. Role of Cys‐40 on AQP3 permeability blockage by Auphen was confirmed by analyzing the mutated protein (AQP3‐Ser‐40). Accordingly, cells transfected with mutated AQP3 gained resistance to the antiproliferative effect of Auphen. These results highlight an Auphen inhibitory effect on proliferation of cells expressing AQP3 and suggest a targeted therapeutic effect on carcinomas with large AQP3 expression. J. Cell. Physiol. 229: 1787–1801, 2014.


The Journal of Membrane Biology | 2009

Membrane Transporters and Cytoplasmatic pH Regulation on Bovine Sertoli Cells

Pedro Oliveira; Mário Sousa; Alberto Barros; Teresa F. Moura; A. Rebelo da Costa

Sertoli cells are responsible for regulating a wide range of processes that lead to the differentiation of male germ cells into spermatozoa. Cytoplasmic pH (pHi) has been shown to be an important parameter in cell physiology, regulating namely cell metabolism and differentiation. However, membrane transport mechanisms involved in pHi regulation mechanisms of Sertoli cells have not yet been elucidated. In this work, pHi was determined using the pH-sensitive fluorescent probe 2′,7′-bis-(2-carboxyethyl)-5-(and-6)-carboxyfluorescein (BCECF). Addition of weak acids resulted in rapid acidification of the intracellular milieu. Sertoli cells then recovered pHi by a mechanism that was shown to be sensitive to external Na+. pHi recovery was also greatly reduced in the presence of 4,4′-diisothiocyanatostilbene-2,2′-disulfonic acid (DIDS) and amiloride. These results point toward the action of an Na+-driven HCO3−/Cl− exchanger and/or an Na+/HCO3− cotransporter and the action of the Na+/H+ exchanger on pHi regulation in the experimental conditions used. pHi recovery was only slightly affected by ouabain, suggesting that the inhibition of Na+/K+-ATPase affects recovery indirectly, possibly via the shift on the Na+ gradient. On the other hand, recovery from the acid load was independent of the presence of concanamycin A, a specific inhibitor of the V-type ATPases, suggesting that these pumps do not have a relevant action on pHi regulation in bovine Sertoli cells.


PLOS ONE | 2013

Biophysical Assessment of Human Aquaporin-7 as a Water and Glycerol Channel in 3T3-L1 Adipocytes

Ana Madeira; Marta Camps; Antonio Zorzano; Teresa F. Moura; Graça Soveral

The plasma membrane aquaporin-7 (AQP7) has been shown to be expressed in adipose tissue and its role in glycerol release/uptake in adipocytes has been postulated and correlated with obesity onset. However, some studies have contradicted this view. Based on this situation, we have re-assessed the precise localization of AQP7 in adipose tissue and analyzed its function as a water and/or glycerol channel in adipose cells. Fractionation of mice adipose tissue revealed that AQP7 is located in both adipose and stromal vascular fractions. Moreover, AQP7 was the only aquaglyceroporin expressed in adipose tissue and in 3T3-L1 adipocytes. By overexpressing the human AQP7 in 3T3-L1 adipocytes it was possible to ascertain its role as a water and glycerol channel in a gain-of-function scenario. AQP7 expression had no effect in equilibrium cell volume but AQP7 loss of function correlated with higher triglyceride content. Furthermore it is also reported for the first time a negative correlation between water permeability and the cell non-osmotic volume supporting the observation that AQP7 depleted cells are more prone to lipid accumulation. Additionally, the strong positive correlation between the rates of water and glycerol transport highlights the role of AQP7 as both a water and a glycerol channel and reflects its expression levels in cells. In all, our results clearly document a direct involvement of AQP7 in water and glycerol transport, as well as in triglyceride content in adipocytes.

Collaboration


Dive into the Teresa F. Moura's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Ivone Figueiredo

Instituto Português do Mar e da Atmosfera

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Maria C. Loureiro-Dias

Instituto Superior de Agronomia

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Catarina Prista

Instituto Superior de Agronomia

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Bárbara Serra-Pereira

Instituto Português do Mar e da Atmosfera

View shared research outputs
Researchain Logo
Decentralizing Knowledge