Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Teresa G. Cachero is active.

Publication


Featured researches published by Teresa G. Cachero.


Journal of Clinical Investigation | 2002

Association of BAFF/BLyS overexpression and altered B cell differentiation with Sjögren’s syndrome

Joanna R. Groom; Susan L. Kalled; Anne H. Cutler; Carl Olson; Stephen A. Woodcock; Pascal Schneider; Jürg Tschopp; Teresa G. Cachero; Marcel Batten; Julie Wheway; Davide Mauri; Dana Cavill; Tom P. Gordon; Charles R. Mackay; Fabienne Mackay

BAFF (BLyS, TALL-1, THANK, zTNF4) is a member of the TNF superfamily that specifically regulates B lymphocyte proliferation and survival. Mice transgenic (Tg) for BAFF develop an autoimmune condition similar to systemic lupus erythematosus. We now demonstrate that BAFF Tg mice, as they age, develop a secondary pathology reminiscent of Sjögrens syndrome (SS), which is manifested by severe sialadenitis, decreased saliva production, and destruction of submaxillary glands. In humans, SS also correlates with elevated levels of circulating BAFF, as well as a dramatic upregulation of BAFF expression in inflamed salivary glands. A likely explanation for disease in BAFF Tg mice is excessive survival signals to autoreactive B cells, possibly as they pass through a critical tolerance checkpoint while maturing in the spleen. The marginal zone (MZ) B cell compartment, one of the enlarged B cell subsets in the spleen of BAFF Tg mice, is a potential reservoir of autoreactive B cells. Interestingly, B cells with an MZ-like phenotype infiltrate the salivary glands of BAFF Tg mice, suggesting that cells of this compartment potentially participate in tissue damage in SS and possibly other autoimmune diseases. We conclude that altered B cell differentiation and tolerance induced by excess BAFF may be central to SS pathogenesis.


Journal of Immunology | 2004

B Cell-Activating Factor Belonging to the TNF Family (BAFF)-R Is the Principal BAFF Receptor Facilitating BAFF Costimulation of Circulating T and B Cells

Lai Guan Ng; Andrew P. R. Sutherland; Rebecca Newton; Fang Qian; Teresa G. Cachero; Martin L. Scott; Jeffrey Thompson; Julie Wheway; Tatyana Chtanova; Joanna Groom; Ian Sutton; Cynthia Xin; Stuart G. Tangye; Susan L. Kalled; Fabienne Mackay; Charles R. Mackay

BAFF (B cell-activating factor belonging to the TNF family) is a cell survival and maturation factor for B cells, and overproduction of BAFF is associated with systemic autoimmune disease. BAFF binds to three receptors, BAFF-R, transmembrane activator and calcium modulator and cyclophilin ligand interactor (TACI), and B cell maturation Ag (BCMA). Using specific mAbs, BAFF-R was found to be the predominant BAFF receptor expressed on peripheral B cells, in both humans and mice, and antagonist mAbs to BAFF-R blocked BAFF-mediated costimulation of anti-μ responses. The other BAFF receptors showed a much more restricted expression pattern, suggestive of specialized roles. BCMA was expressed by germinal center B cells, while TACI was expressed predominantly by splenic transitional type 2 and marginal zone B cells, as well as activated B cells, but was notably absent from germinal center B cells. BAFF was also an effective costimulator for T cells, and this costimulation occurs entirely through BAFF-R. BAFF-R, but not TACI or BCMA, was expressed on activated/memory subsets of T cells, and T cells from BAFF-R mutant A/WySnJ mice failed to respond to BAFF costimulation. Thus, BAFF-R is important not only for splenic B cell maturation, but is the major mediator of BAFF-dependent costimulatory responses in peripheral B and T cells.


Journal of Experimental Medicine | 2005

Identification of proteoglycans as the APRIL-specific binding partners

Karine Ingold; Adrian Zumsteg; Aubry Tardivel; Bertrand Huard; Quynh-Giao Steiner; Teresa G. Cachero; Fang Qiang; Leonid Gorelik; Susan L. Kalled; Hans Acha-Orbea; Paul D. Rennert; Jürg Tschopp; Pascal Schneider

B cell activating factor of the tumor necrosis factor (TNF) family (BAFF) and a proliferation-inducing ligand (APRIL) are closely related ligands within the TNF superfamily that play important roles in B lymphocyte biology. Both ligands share two receptors—transmembrane activator and calcium signal–modulating cyclophilin ligand interactor (TACI) and B cell maturation antigen (BCMA)—that are predominantly expressed on B cells. In addition, BAFF specifically binds BAFF receptor, whereas the nature of a postulated APRIL-specific receptor remains elusive. We show that the TNF homology domain of APRIL binds BCMA and TACI, whereas a basic amino acid sequence (QKQKKQ) close to the NH2 terminus of the mature protein is required for binding to the APRIL-specific “receptor.” This interactor was identified as negatively charged sulfated glycosaminoglycan side chains of proteoglycans. Although T cell lines bound little APRIL, the ectopic expression of glycosaminoglycan-rich syndecans or glypicans conferred on these cells a high binding capacity that was completely dependent on APRILs basic sequence. Moreover, syndecan-1–positive plasma cells and proteoglycan-rich nonhematopoietic cells displayed high specific, heparin-sensitive binding to APRIL. Inhibition of BAFF and APRIL, but not BAFF alone, prevented the survival and/or the migration of newly formed plasma cells to the bone marrow. In addition, costimulation of B cell proliferation by APRIL was only effective upon APRIL oligomerization. Therefore, we propose a model whereby APRIL binding to the extracellular matrix or to proteoglycan-positive cells induces APRIL oligomerization, which is the prerequisite for the triggering of TACI- and/or BCMA-mediated activation, migration, or survival signals.


Science | 2005

Small-Molecule Inhibition of TNF-α

Molly M. He; Annemarie Stroustrup Smith; Johan D. Oslob; William Michael Flanagan; Andrew C. Braisted; Adrian Whitty; Mark T. Cancilla; Jun Wang; Alexey A. Lugovskoy; Josh C. Yoburn; Amy D. Fung; Graham K. Farrington; John K. Eldredge; Eric S. Day; Leslie A. Cruz; Teresa G. Cachero; Stephan K. Miller; Jessica E. Friedman; Ingrid C. Choong; Brian C. Cunningham

We have identified a small-molecule inhibitor of tumor necrosis factor α (TNF-α) that promotes subunit disassembly of this trimeric cytokine family member. The compound inhibits TNF-α activity in biochemical and cell-based assays with median inhibitory concentrations of 22 and 4.6 micromolar, respectively. Formation of an intermediate complex between the compound and the intact trimer results in a 600-fold accelerated subunit dissociation rate that leads to trimer dissociation. A structure solved by x-ray crystallography reveals that a single compound molecule displaces a subunit of the trimer to form a complex with a dimer of TNF-α subunits.


Journal of Biological Chemistry | 2003

Comparison of Soluble Decoy IgG Fusion Proteins of BAFF-R and BCMA as Antagonists for BAFF

Marc Pelletier; Jeffrey Thompson; Fang Qian; Sarah A. Bixler; Dahai Gong; Teresa G. Cachero; Kevin Gilbride; Eric S. Day; Mohammad Zafari; Christopher D. Benjamin; Leonid Gorelik; Adrian Whitty; Susan L. Kalled; Christine Ambrose; Yen-Ming Hsu

BAFF is considered a therapeutic target because dysregulated production of BAFF can induce systemic lupus erythematosus-like phenotype in mice, and elevated levels of BAFF are associated with disease severity in systemic lupus erythematosus and rheumatoid arthritis patients. Fc fusion decoy receptors, BCMA-Fc and BAFF-R-Fc, are therapeutic candidates for blocking BAFF. While studying their interactions with BAFF, we found that BAFF-R-Fc is more effective than BCMA-Fc for blocking BAFF binding to its receptors. We also found that a trimeric BAFF can bind more than one BAFF-R-Fc but only one BCMA-Fc. Moreover, we show that, in contrast to monovalent BAFF-R-Fc, monovalent BCMA does not form stable complexes with BAFF. Differences in their interaction with BAFF predict BAFF-R-Fc would be a better inhibitor. Indeed, we show BAFF-R-Fc is 10-fold more efficacious than BCMA-Fc for blocking BAFF-induced B cell proliferation in vitro and for blocking BAFF-mediated survival of mouse splenic B lymphocytes in vivo.


ACS Chemical Biology | 2011

Small Molecule Inhibition of the TNF Family Cytokine CD40 Ligand Through a Subunit Fracture Mechanism

Laura Silvian; Jessica E. Friedman; Kathy Strauch; Teresa G. Cachero; Eric S. Day; Fang Qian; Brian T. Cunningham; Amy D. Fung; Lihong Sun; Gerald W. Shipps; Lihe Su; Zhongli Zheng; Gnanasambandam Kumaravel; Adrian Whitty

BIO8898 is one of several synthetic organic molecules that have recently been reported to inhibit receptor binding and function of the constitutively trimeric tumor necrosis factor (TNF) family cytokine CD40 ligand (CD40L, aka CD154). Small molecule inhibitors of protein-protein interfaces are relatively rare, and their discovery is often very challenging. Therefore, to understand how BIO8898 achieves this feat, we characterized its mechanism of action using biochemical assays and X-ray crystallography. BIO8898 inhibited soluble CD40L binding to CD40-Ig with a potency of IC(50) = 25 μM and inhibited CD40L-dependent apoptosis in a cellular assay. A co-crystal structure of BIO8898 with CD40L revealed that one inhibitor molecule binds per protein trimer. Surprisingly, the compound binds not at the surface of the protein but by intercalating deeply between two subunits of the homotrimeric cytokine, disrupting a constitutive protein-protein interface and breaking the proteins 3-fold symmetry. The compound forms several hydrogen bonds with the protein, within an otherwise hydrophobic binding pocket. In addition to the translational splitting of the trimer, binding of BIO8898 was accompanied by additional local and longer-range conformational perturbations of the protein, both in the core and in a surface loop. Binding of BIO8898 is reversible, and the resulting complex is stable and does not lead to detectable dissociation of the protein trimer. Our results suggest that a set of core aromatic residues that are conserved across a subset of TNF family cytokines might represent a generic hot-spot for the induced-fit binding of trimer-disrupting small molecules.


Science | 2001

An Essential Role for BAFF in the Normal Development of B Cells Through a BCMA-Independent Pathway

Barbara Schiemann; Jennifer L. Gommerman; Kalpit A. Vora; Teresa G. Cachero; Svetlana Shulga-Morskaya; Max Dobles; Erica M. Frew; Martin L. Scott


Science | 2001

BAFF-R, a newly identified TNF receptor that specifically interacts with BAFF

Jeffrey Thompson; Sarah A. Bixler; Fang Qian; Kalpit A. Vora; Martin L. Scott; Teresa G. Cachero; Catherine Hession; Pascal Schneider; Irene Sizing; Colleen Mullen; Kathy Strauch; Mohammad Zafari; Christopher D. Benjamin; Jürg Tschopp; Jeffrey L. Browning; Christine Ambrose


Journal of Experimental Medicine | 2000

Baff Mediates Survival of Peripheral Immature B Lymphocytes

Marcel Batten; Joanna R. Groom; Teresa G. Cachero; Fang Qian; Pascal Schneider; Jürg Tschopp; Jeffrey L. Browning; Fabienne Mackay


Journal of Experimental Medicine | 2000

Baff Binds to the Tumor Necrosis Factor Receptor–Like Molecule B Cell Maturation Antigen and Is Important for Maintaining the Peripheral B Cell Population

Jeffrey Thompson; Pascal Schneider; Susan L. Kalled; Li Chun Wang; Eric A. Lefevre; Teresa G. Cachero; Fabienne Mackay; Sarah A. Bixler; Mohammad Zafari; Zhong-Ying Liu; Stephen A. Woodcock; Fang Qian; Marcel Batten; Christine Madry; Yolande Richard; Christopher D. Benjamin; Jeffrey L. Browning; Andreas Tsapis; Jürg Tschopp; Christine Ambrose

Collaboration


Dive into the Teresa G. Cachero's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge