Teresa Iuculano
Stanford University
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Teresa Iuculano.
Current Biology | 2010
Roi Cohen Kadosh; Sonja Soskic; Teresa Iuculano; Ryota Kanai; Vincent Walsh
Summary Around 20% of the population exhibits moderate to severe numerical disabilities [1–3], and a further percentage loses its numerical competence during the lifespan as a result of stroke or degenerative diseases [4]. In this work, we investigated the feasibility of using noninvasive stimulation to the parietal lobe during numerical learning to selectively improve numerical abilities. We used transcranial direct current stimulation (TDCS), a method that can selectively inhibit or excitate neuronal populations by modulating GABAergic (anodal stimulation) and glutamatergic (cathodal stimulation) activity [5, 6]. We trained subjects for 6 days with artificial numerical symbols, during which we applied concurrent TDCS to the parietal lobes. The polarity of the brain stimulation specifically enhanced or impaired the acquisition of automatic number processing and the mapping of number into space, both important indices of numerical proficiency [7–9]. The improvement was still present 6 months after the training. Control tasks revealed that the effect of brain stimulation was specific to the representation of artificial numerical symbols. The specificity and longevity of TDCS on numerical abilities establishes TDCS as a realistic tool for intervention in cases of atypical numerical development or loss of numerical abilities because of stroke or degenerative illnesses.
The Journal of Neuroscience | 2013
Teresa Iuculano; R Cohen Kadosh
Noninvasive brain stimulation provides a potential tool for affecting brain functions in the typical and atypical brain and offers in several cases an alternative to pharmaceutical intervention. Some studies have suggested that transcranial electrical stimulation (TES), a form of noninvasive brain stimulation, can also be used to enhance cognitive performance. Critically, research so far has primarily focused on optimizing protocols for effective stimulation, or assessing potential physical side effects of TES while neglecting the possibility of cognitive side effects. We assessed this possibility by targeting the high-level cognitive abilities of learning and automaticity in the mathematical domain. Notably, learning and automaticity represent critical abilities for potential cognitive enhancement in typical and atypical populations. Over 6 d, healthy human adults underwent cognitive training on a new numerical notation while receiving TES to the posterior parietal cortex or the dorsolateral prefrontal cortex. Stimulation to the the posterior parietal cortex facilitated numerical learning, whereas automaticity for the learned material was impaired. In contrast, stimulation to the dorsolateral prefrontal cortex impaired the learning process, whereas automaticity for the learned material was enhanced. The observed double dissociation indicates that cognitive enhancement through TES can occur at the expense of other cognitive functions. These findings have important implications for the future use of enhancement technologies for neurointervention and performance improvement in healthy populations.
Biological Psychiatry | 2014
Teresa Iuculano; Miriam Rosenberg-Lee; Kaustubh Supekar; Charles J. Lynch; Amirah Khouzam; Jennifer Phillips; Lucina Q. Uddin; Vinod Menon
BACKGROUND Autism spectrum disorder (ASD) is a neurodevelopmental disorder characterized by social and communication deficits. While such deficits have been the focus of most research, recent evidence suggests that individuals with ASD may exhibit cognitive strengths in domains such as mathematics. METHODS Cognitive assessments and functional brain imaging were used to investigate mathematical abilities in 18 children with ASD and 18 age-, gender-, and IQ-matched typically developing (TD) children. Multivariate classification and regression analyses were used to investigate whether brain activity patterns during numerical problem solving were significantly different between the groups and predictive of individual mathematical abilities. RESULTS Children with ASD showed better numerical problem solving abilities and relied on sophisticated decomposition strategies for single-digit addition problems more frequently than TD peers. Although children with ASD engaged similar brain areas as TD children, they showed different multivariate activation patterns related to arithmetic problem complexity in ventral temporal-occipital cortex, posterior parietal cortex, and medial temporal lobe. Furthermore, multivariate activation patterns in ventral temporal-occipital cortical areas typically associated with face processing predicted individual numerical problem solving abilities in children with ASD but not in TD children. CONCLUSIONS Our study suggests that superior mathematical information processing in children with ASD is characterized by a unique pattern of brain organization and that cortical regions typically involved in perceptual expertise may be utilized in novel ways in ASD. Our findings of enhanced cognitive and neural resources for mathematics have critical implications for educational, professional, and social outcomes for individuals with this lifelong disorder.
Nature Communications | 2015
Teresa Iuculano; Miriam Rosenberg-Lee; Jennifer Richardson; Caitlin Tenison; Lynn S. Fuchs; Kaustubh Supekar; Vinod Menon
Competency with numbers is essential in todays society; yet, up to 20% of children exhibit moderate to severe mathematical learning disabilities (MLD). Behavioural intervention can be effective, but the neurobiological mechanisms underlying successful intervention are unknown. Here we demonstrate that eight weeks of 1:1 cognitive tutoring not only remediates poor performance in children with MLD, but also induces widespread changes in brain activity. Neuroplasticity manifests as normalization of aberrant functional responses in a distributed network of parietal, prefrontal and ventral temporal–occipital areas that support successful numerical problem solving, and is correlated with performance gains. Remarkably, machine learning algorithms show that brain activity patterns in children with MLD are significantly discriminable from neurotypical peers before, but not after, tutoring, suggesting that behavioural gains are not due to compensatory mechanisms. Our study identifies functional brain mechanisms underlying effective intervention in children with MLD and provides novel metrics for assessing response to intervention.
The Journal of Neuroscience | 2015
Kaustubh Supekar; Teresa Iuculano; Lang Chen; Vinod Menon
Math anxiety is a negative emotional reaction that is characterized by feelings of stress and anxiety in situations involving mathematical problem solving. High math-anxious individuals tend to avoid situations involving mathematics and are less likely to pursue science, technology, engineering, and math-related careers than those with low math anxiety. Math anxiety during childhood, in particular, has adverse long-term consequences for academic and professional success. Identifying cognitive interventions and brain mechanisms by which math anxiety can be ameliorated in children is therefore critical. Here we investigate whether an intensive 8 week one-to-one cognitive tutoring program designed to improve mathematical skills reduces childhood math anxiety, and we identify the neurobiological mechanisms by which math anxiety can be reduced in affected children. Forty-six children in grade 3, a critical early-onset period for math anxiety, participated in the cognitive tutoring program. High math-anxious children showed a significant reduction in math anxiety after tutoring. Remarkably, tutoring remediated aberrant functional responses and connectivity in emotion-related circuits anchored in the basolateral amygdala. Crucially, children with greater tutoring-induced decreases in amygdala reactivity had larger reductions in math anxiety. Our study demonstrates that sustained exposure to mathematical stimuli can reduce math anxiety and highlights the key role of the amygdala in this process. Our findings are consistent with models of exposure-based therapy for anxiety disorders and have the potential to inform the early treatment of a disability that, if left untreated in childhood, can lead to significant lifelong educational and socioeconomic consequences in affected individuals. SIGNIFICANCE STATEMENT Math anxiety during early childhood has adverse long-term consequences for academic and professional success. It is therefore important to identify ways to alleviate math anxiety in young children. Surprisingly, there have been no studies of cognitive interventions and the underlying neurobiological mechanisms by which math anxiety can be ameliorated in young children. Here, we demonstrate that intensive 8 week one-to-one cognitive tutoring not only reduces math anxiety but also remarkably remediates aberrant functional responses and connectivity in emotion-related circuits anchored in the amygdala. Our findings are likely to propel new ways of thinking about early treatment of a disability that has significant implications for improving each individuals academic and professional chances of success in todays technological society that increasingly demands strong quantitative skills.
Frontiers in Human Neuroscience | 2014
Teresa Iuculano; Roi Cohen Kadosh
Nearly 7% of the population exhibit difficulties in dealing with numbers and performing arithmetic, a condition named Developmental Dyscalculia (DD), which significantly affects the educational and professional outcomes of these individuals, as it often persists into adulthood. Research has mainly focused on behavioral rehabilitation, while little is known about performance changes and neuroplasticity induced by the concurrent application of brain-behavioral approaches. It has been shown that numerical proficiency can be enhanced by applying a small—yet constant—current through the brain, a non-invasive technique named transcranial electrical stimulation (tES). Here we combined a numerical learning paradigm with transcranial direct current stimulation (tDCS) in two adults with DD to assess the potential benefits of this methodology to remediate their numerical difficulties. Subjects learned to associate artificial symbols to numerical quantities within the context of a trial and error paradigm, while tDCS was applied to the posterior parietal cortex (PPC). The first subject (DD1) received anodal stimulation to the right PPC and cathodal stimulation to the left PPC, which has been associated with numerical performances improvements in healthy subjects. The second subject (DD2) received anodal stimulation to the left PPC and cathodal stimulation to the right PPC, which has been shown to impair numerical performance in healthy subjects. We examined two indices of numerical proficiency: (i) automaticity of number processing; and (ii) mapping of numbers onto space. Our results are opposite to previous findings with non-dyscalculic subjects. Only anodal stimulation to the left PPC improved both indices of numerical proficiency. These initial results represent an important step to inform the rehabilitation of developmental learning disabilities, and have relevant applications for basic and applied research in cognitive neuroscience, rehabilitation, and education.
Neuropsychologia | 2012
Carlo Semenza; Sabrina Bonollo; Roberta Polli; Cristina Busana; Riccardo Pignatti; Teresa Iuculano; Anna Maria Laverda; Konstantinos Priftis; Alessandra Murgia
Neuropsychological investigations of FMR1 premutation carriers without FXTAS present one domain resulting in contradictory findings, namely that of mathematical skills. One reason for this might be that standard clinical batteries used so far may be inadequate to uncover precise deficits within specific mathematical skills. In fact, these batteries do not clearly distinguish between specific mathematical abilities and are therefore likely to provide only a generic indication of a deficit. Mathematical skills in a group of females with FMR1 premutation were investigated through the use of an extensive, theoretically grounded battery of mathematical tasks, encompassing counting, number comprehension, numerical transcoding, calculation skills and arithmetic principles. Moreover, the mental representation of numbers was assessed by studying the Spatial Numerical Association of Response Codes (SNARC) effect and mental number line (MNL) bisection. The FMR1 premutation group (N=18) comprised 29-50 years old women of normal intelligence, who were individually matched on age, sex and education to a group of healthy participants (N=18). Specific yet subtle weaknesses were detected on processes of basic number understanding such as dealing with analogue scales and certain aspects of number transcoding, in the presence of otherwise spared calculation abilities.
Trends in Neuroscience and Education | 2017
Miriam Rosenberg-Lee; Teresa Iuculano; Se Ri Bae; Jennifer Richardson; Shaozheng Qin; Dietsje Jolles; Vinod Menon
Abstract Objective A goal of developmental cognitive neuroscience is to uncover brain mechanisms underlying successful learning. While longitudinal studies capture brain changes following ‘schooling as usual’, short-term training studies can more directly link learning to brain changes. We investigated whether eight weeks of cognitive training recapitulates longitudinal changes in hippocampal engagement and connectivity. Methods Nineteen children underwent a training program focused on improving arithmetic skills, along with fifteen children in a no-contact control group. Before and after training, or no-contact, both groups performed an arithmetic task during neuroimaging and a strategy assessment. Results Training increased activity in the anterior hippocampus, and gains in memory-based strategies were associated with decreased lateral fronto-parietal activity and increased hippocampus-parietal connectivity. No changes were observed in the no-contact control group. Conclusions Our results demonstrate that short-term training can recapitulate long-term neurodevelopmental changes accompanying learning and identifies plasticity of hippocampal responses as a common locus of cognitive skill development in children.
Archive | 2018
Teresa Iuculano; Aarthi Padmanabhan; Vinod Menon
Abstract In this chapter, we take a systems neuroscience approach and review neurocognitive systems involved in mathematical cognition and learning, highlighting functional brain circuits that support these processes and sources of heterogeneity that influence their typical or atypical development. We first examine the core neural building blocks of numerical cognition anchored in posterior parietal and ventral temporal–occipital cortices and then describe how working memory, language, declarative memory, and cognitive control systems facilitate numerical problem-solving and help scaffold mathematical learning and skill acquisition. We then highlight the contribution of interactive functional circuits to mathematical cognition and learning at different stages of development and skill levels. We suggest that mathematical knowledge serves as a model domain for investigating the ontogenesis of human cognitive and problem-solving skills, and that a systems neuroscience framework can shed light on why some individuals excel and others struggle.
Archive | 2018
Teresa Iuculano; Aarthi Padmanabhan; Vinod Menon