Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Teresa L. Serafim is active.

Publication


Featured researches published by Teresa L. Serafim.


Journal of Pharmacology and Experimental Therapeutics | 2007

Mitochondrially Targeted Effects of Berberine [Natural Yellow 18, 5,6-dihydro-9,10-dimethoxybenzo(g)-1,3-benzodioxolo(5,6-a) quinolizinium] on K1735-M2 Mouse Melanoma Cells: Comparison with Direct Effects on Isolated Mitochondrial Fractions

Gonçalo C. Pereira; Ana F. Branco; Júlio A.C. Matos; Sandro L. Pereira; Donna Parke; Edward Perkins; Teresa L. Serafim; Vilma A. Sardão; Maria S. Santos; António J. Moreno; Jon Holy; Paulo J. Oliveira

Berberine [Natural Yellow 18, 5,6-dihydro-9,10-dimethoxybenzo(g)-1,3-benzodioxolo(5,6-a)quinolizinium] is an alkaloid present in plant extracts and has a history of use in traditional Chinese and Native American medicine. Because of its ability to arrest the cell cycle and cause apoptosis of several malignant cell lines, it has received attention as a potential anticancer therapeutic agent. Previous studies suggest that mitochondria may be an important target of berberine, but relatively little is known about the extent or molecular mechanisms of berberine-mitochondrial interactions. The objective of the present work was to investigate the interaction of berberine with mitochondria, both in situ and in isolated mitochondrial fractions. The data show that berberine is selectively accumulated by mitochondria, which is accompanied by arrest of cell proliferation, mitochondrial fragmentation and depolarization, oxidative stress, and a decrease in ATP levels. Electron microscopy of berberine-treated cells shows a reduction in mitochondria-like structures, accompanied by a decrease in mitochondrial DNA copy number. Isolated mitochondrial fractions treated with berberine had slower mitochondrial respiration, especially when complex I substrates were used, and increased complex I-dependent oxidative stress. It is also demonstrated for the first time that berberine stimulates the mitochondrial permeability transition. Direct effects on ATPase activity were not detected. The present work demonstrates a number of previously unknown alterations of mitochondrial physiology induced by berberine, a potential chemotherapeutic agent, although it also suggests that high doses of berberine should not be used without a proper toxicology assessment.


Chemical Research in Toxicology | 2011

Lipophilic Caffeic and Ferulic Acid Derivatives Presenting Cytotoxicity against Human Breast Cancer Cells

Teresa L. Serafim; Filipa Carvalho; M. P. M. Marques; Rita Calheiros; Tiago H. Silva; Jorge Garrido; Nuno Milhazes; Fernanda Borges; Fernanda M.F. Roleira; Elisi ario T. Silva; Jon Holy; Paulo J. Oliveira

In the present work, lipophilic caffeic and ferulic acid derivatives were synthesized, and their cytotoxicity on cultured breast cancer cells was compared. A total of six compounds were initially evaluated: caffeic acid (CA), hexyl caffeate (HC), caffeoylhexylamide (HCA), ferulic acid (FA), hexyl ferulate (HF), and feruloylhexylamide (HFA). Cell proliferation, cell cycle progression, and apoptotic signaling were investigated in three human breast cancer cell lines, including estrogen-sensitive (MCF-7) and insensitive (MDA-MB-231 and HS578T). Furthermore, direct mitochondrial effects of parent and modified compounds were investigated by using isolated liver mitochondria. The results indicated that although the parent compounds presented no cytotoxicity, the new compounds inhibited cell proliferation and induced cell cycle alterations and cell death, with a predominant effect on MCF-7 cells. Interestingly, cell cycle data indicates that effects on nontumor BJ fibroblasts were predominantly cytostatic and not cytotoxic. The parent compounds and derivatives also promoted direct alterations on hepatic mitochondrial bioenergetics, although the most unexpected and never before reported one was that FA induces the mitochondrial permeability transition. The results show that the new caffeic and ferulic acid lipophilic derivatives show increased cytotoxicity toward human breast cancer cell lines, although the magnitude and type of effects appear to be dependent on the cell type. Mitochondrial data had no direct correspondence with effects on intact cells suggesting that this organelle may not be a critical component of the cellular effects observed. The data provide a rational approach to the design of effective cytotoxic lipophilic hydroxycinnamic derivatives that in the future could be profitably applied for chemopreventive and/or chemotherapeutic purposes.


Current Drug Targets | 2011

Berberine as a Promising Safe Anti-Cancer Agent- Is there a Role for Mitochondria?

Cátia V. Diogo; Nuno G. Machado; Inês A. Barbosa; Teresa L. Serafim; Ana Burgeiro; Paulo J. Oliveira

Metabolic regulation is largely dependent on mitochondria, which play an important role in energy homeostasis. Imbalance between energy intake and expenditure leads to mitochondrial dysfunction, characterized by a reduced ratio of energy production (ATP production) to respiration. Due to the role of mitochondrial factors/events in several apoptotic pathways, the possibility of targeting that organelle in the tumor cell, leading to its elimination is very attractive, although the safety issue is problematic. Berberine, a benzyl-tetra isoquinoline alkaloid extracted from plants of the Berberidaceae family, has been extensively used for many centuries, especially in the traditional Chinese and Native American medicine. Several evidences suggest that berberine possesses several therapeutic uses, including anti-tumoral activity. The present review supplies evidence that berberine is a safe anti-cancer agent, exerting several effects on mitochondria, including inhibition of mitochondrial Complex I and interaction with the adenine nucleotide translocator which can explain several of the described effects on tumor cells.


Biochemical Pharmacology | 2008

Sanguinarine cytotoxicity on mouse melanoma K1735-M2 cells—Nuclear vs. mitochondrial effects

Teresa L. Serafim; Júlio A.C. Matos; Vilma A. Sardão; Gonçalo C. Pereira; Ana F. Branco; Sandro L. Pereira; Donna Parke; Edward Perkins; António J. Moreno; Jon Holy; Paulo J. Oliveira

Sanguinarine (SANG) is an alkaloid recognized to have anti-proliferative activity against various human tumour cell lines. No data is available on the susceptibility of advanced malignant melanoma to SANG, although this disease has a very poor prognosis if not detected in time due to the resistance to conventional chemotherapy. The present work was designed to study the nuclear and mitochondrial involvement in the pro-apoptotic effect of SANG in an invasive mouse melanoma cell line. The results obtained show that SANG is primarily accumulated by the cell nuclei, causing inhibition of cell proliferation and inducing cell death, as confirmed by an increase in sub-G1 peaks. At low concentrations, SANG induces mitochondrial depolarization in a sub-population of melanoma cells, which also generally displayed strong nuclear labelling of phosphorylated histone H2AX. Western blotting revealed an increase in p53, but not Bax protein, in both whole-cell extracts and in mitochondrial fractions. Isolated hepatic mitochondrial fractions revealed that SANG affects the mitochondrial respiratory chain, and has dual effects on mitochondrial calcium loading capacity. We suggest that SANG is able to induce apoptosis in metastatic melanoma cells. The knowledge of mitochondrial vs. nuclear effects of SANG is important in the development of this promising compound for clinical use against aggressive melanoma.


Bioorganic & Medicinal Chemistry | 2013

Dimethylaminopyridine derivatives of lupane triterpenoids cause mitochondrial disruption and induce the permeability transition

Telma C. Bernardo; Teresa Cunha-Oliveira; Teresa L. Serafim; Jon Holy; Dmytro Krasutsky; Oksana Kolomitsyna; Pavel A. Krasutsky; António J.M. Moreno; Paulo J. Oliveira

Triterpenoids are a large class of naturally occurring compounds, and some potentially interesting as anticancer agents have been found to target mitochondria. The objective of the present work was to investigate the mechanisms of mitochondrial toxicity induced by novel dimethylaminopyridine (DMAP) derivatives of pentacyclic triterpenes, which were previously shown to inhibit the growth of melanoma cells in vitro. MCF-7, Hs 578T and BJ cell lines, as well as isolated hepatic mitochondria, were used to investigate direct mitochondrial effects. On isolated mitochondrial hepatic fractions, respiratory parameters, mitochondrial transmembrane electric potential, induction of the mitochondrial permeability transition (MPT) pore and ion transport-dependent osmotic swelling were measured. Our results indicate that the DMAP triterpenoid derivatives lead to fragmentation and depolarization of the mitochondrial network in situ, and to inhibition of uncoupled respiration, induction of the permeability transition pore and depolarization of isolated hepatic mitochondria. The results show that mitochondrial toxicity is an important component of the biological interaction of DMAP derivatives, which can explain the effects observed in cancer cells.


Bioorganic & Medicinal Chemistry | 2014

New derivatives of lupane triterpenoids disturb breast cancer mitochondria and induce cell death

Teresa L. Serafim; Filipa Carvalho; Telma C. Bernardo; Gonçalo C. Pereira; Edward Perkins; Jon Holy; Dmytro Krasutsky; Oksana Kolomitsyna; Pavel A. Krasutsky; Paulo J. Oliveira

Novel cationic dimethylaminopyridine derivatives of pentacyclic triterpenes were previously described to promote mitochondrial depolarization and cell death in breast and melanoma cell lines. The objective of this work was to further investigate in detail the mechanism of mitochondrial perturbations, correlating those effects with breast cancer cell responses to those same agents. Initially, a panel of tumor and non-tumor cell lines was grown in high-glucose or glucose-free glutamine-containing media, the later forcing cells to synthesize ATP by oxidative phosphorylation only. Cell proliferation, cell cycle, cell death and mitochondrial membrane polarization were evaluated. Inhibition of cell proliferation was observed, accompanied by an arrest in the G1-cell cycle phase, and importantly, by loss of mitochondrial membrane potential. On a later time-point, caspase-9 and 3 activation were observed, resulting in cell death. For the majority of test compounds, we determined that cell toxicity was augmented in the galactose media. To investigate direct evidences on mitochondria isolated rat liver mitochondria were used. The results showed that the compounds were strong inducers of the permeability transition pore. Confirming our previous results, this work shows that the novel DMAP derivatives strongly interact with mitochondria, resulting in pro-apoptotic signaling and cell death.


Archives of Toxicology | 2017

Sirtuin 1-dependent resveratrol cytotoxicity and pro-differentiation activity on breast cancer cells

Cláudia M. Deus; Teresa L. Serafim; Silvia Magalhães-Novais; Andreia Vilaça; Ana C. Moreira; Vilma A. Sardão; Susana M. Cardoso; Paulo J. Oliveira

Sirtuins regulate several processes associated with tumor development. Resveratrol was shown to stimulate sirtuin 1 and 3 (SIRT1/3) activities and to result in cytotoxicity for some tumor types. The relationship between modulation of sirtuin activities, cellular metabolic remodeling and resveratrol cytotoxicity mechanism on breast cancer cells is still an open question. Here, we evaluated whether sirtuin 1 and 3 are involved in resveratrol toxicity and whether resveratrol leads to a metabolic remodeling and cell differentiation. Results using the Extracellular Flux Analyzer indicated that resveratrol inhibits mitochondrial respiration in breast cancer cells. We also demonstrated here for the first time that resveratrol cytotoxic effects on breast cancer cells were modulated by SIRT1 and also involved mitochondrial complex I inhibition. Importantly, we also demonstrated that resveratrol reduced the pool of breast cancer cells with stemness markers through a SIRT1-dependent mechanism. Our data highlights the role of SIRT1 in regulating resveratrol induced differentiation and/or toxicity in breast cancer cells.


European Journal of Clinical Investigation | 2015

Role of mtDNA-related mitoepigenetic phenomena in cancer

André F. Ferreira; Teresa L. Serafim; Vilma A. Sardão; Teresa Cunha-Oliveira

Abnormal mitochondrial function has long been associated with the development and the progression of cancer. Multiple defects in the mitochondrial genome have been reported for various cancers, however the often disregarded mitochondrial epigenetic landscape provides an additional source of deregulation that may contribute to carcinogenesis.


Methods of Molecular Biology | 2015

Analysis of Pro-apoptotic Protein Trafficking to and from Mitochondria

Ignacio Vega-Naredo; Teresa Cunha-Oliveira; Teresa L. Serafim; Vilma A. Sardão; Paulo J. Oliveira

Mitochondria play a key role in cell death and its regulation. The permeabilization of the outer mitochondrial membrane which is mainly controlled by proteins of the BCL-2 family, is a key event that can be directly induced by p53 and results in the release of pro-apoptotic factors to the cytosol, such as cytochrome c, second mitochondria derived activator of caspases/direct inhibitor-of-apoptosis (IAP) binding protein with low pI (SMAC/Diablo), Omi serine protease (Omi/HtrA2), apoptosis inducing factor (AIF), or endonuclease G (Endo-G). Hence, the determination of subcellular localization of these proteins is extremely important to predict cell fate and elucidate the specific mechanism of apoptosis. Here we describe the procedures that can be used to study the subcellular location of different pro-apoptotic proteins to be used in basic cell biology and toxicology studies.


Future Medicinal Chemistry | 2014

Targeting mitochondrial function for the treatment of breast cancer

Cláudia M. Deus; Ana Coelho; Teresa L. Serafim; Paulo J. Oliveira

There are many approaches used to control breast cancer, although the most efficient strategy is the reactivation of apoptosis. Since mitochondria play an important role in cellular metabolism and homeostasis, as well as in the regulation of cell death pathways, we focus here on metabolic remodeling and mitochondrial alterations present in breast tumor cells. We review strategies including classes of compounds and delivery systems that target metabolic and specific mitochondrial alterations to kill tumor cells without affecting their normal counterparts. We present here the arguments for the improvement of already existent molecules and the design of novel promising anticancer drug candidates that target breast cancer mitochondria.

Collaboration


Dive into the Teresa L. Serafim's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Jon Holy

University of Minnesota

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge