Teresa L. Southard
Cornell University
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Teresa L. Southard.
PLOS Genetics | 2010
Chen-Hua Chuang; Marsha D. Wallace; Christian Abratte; Teresa L. Southard; John C. Schimenti
Mutations causing replication stress can lead to genomic instability (GIN). In vitro studies have shown that drastic depletion of the MCM2-7 DNA replication licensing factors, which form the replicative helicase, can cause GIN and cell proliferation defects that are exacerbated under conditions of replication stress. To explore the effects of incrementally attenuated replication licensing in whole animals, we generated and analyzed the phenotypes of mice that were hemizygous for Mcm2, 3, 4, 6, and 7 null alleles, combinations thereof, and also in conjunction with the hypomorphic Mcm4Chaos3 cancer susceptibility allele. Mcm4Chaos3/Chaos3 embryonic fibroblasts have ∼40% reduction in all MCM proteins, coincident with reduced Mcm2-7 mRNA. Further genetic reductions of Mcm2, 6, or 7 in this background caused various phenotypes including synthetic lethality, growth retardation, decreased cellular proliferation, GIN, and early onset cancer. Remarkably, heterozygosity for Mcm3 rescued many of these defects. Consistent with a role in MCM nuclear export possessed by the yeast Mcm3 ortholog, the phenotypic rescues correlated with increased chromatin-bound MCMs, and also higher levels of nuclear MCM2 during S phase. The genetic, molecular and phenotypic data demonstrate that relatively minor quantitative alterations of MCM expression, homeostasis or subcellular distribution can have diverse and serious consequences upon development and confer cancer susceptibility. The results support the notion that the normally high levels of MCMs in cells are needed not only for activating the basal set of replication origins, but also “backup” origins that are recruited in times of replication stress to ensure complete replication of the genome.
Proceedings of the National Academy of Sciences of the United States of America | 2011
Suzanne A. Hartford; Yunhai Luo; Teresa L. Southard; Irene M. Min; John T. Lis; John C. Schimenti
Effective DNA replication is critical to the health and reproductive success of organisms. The six MCM2–7 proteins, which form the replicative helicase, are essential for high-fidelity replication of the genome. Many eukaryotes have a divergent paralog, MCM9, that was reported to be essential for loading MCM2–7 onto replication origins in the Xenopus oocyte extract system. To address the in vivo role of mammalian MCM9, we created and analyzed the phenotypes of mice with various mutations in Mcm9 and an intronic DNA replication-related gene Asf1a. Ablation of Mcm9 was compatible with cell proliferation and mouse viability, showing that it is nonessential for MCM2–7 loading or DNA replication. Mcm9 mutants underwent p53-independent embryonic germ-cell depletion in both sexes, with males also exhibiting defective spermatogonial stem-cell renewal. MCM9-deficient cells had elevated genomic instability and defective cell cycle reentry following replication stress, and mutant animals were prone to sex-specific cancers, most notably hepatocellular carcinoma in males. The phenotypes of mutant mice and cells suggest that MCM9 evolved a specialized but nonessential role in DNA replication or replication-linked quality-control mechanisms that are especially important for germ-line stem cells, and also for tumor suppression and genome maintenance in the soma.
Journal of Biomedical Optics | 2012
Ina Pavlova; Kelly R. Hume; Stephanie A. Yazinski; James A. Flanders; Teresa L. Southard; Robert S. Weiss; Watt W. Webb
Limitations of current medical procedures for detecting early lung cancers inspire the need for new diagnostic imaging modalities for the direct microscopic visualization of lung nodules. Multiphoton microscopy (MPM) provides for subcellular resolution imaging of intrinsic fluorescence from unprocessed tissue with minimal optical attenuation and photodamage. We demonstrate that MPM detects morphological and spectral features of lung tissue and differentiates between normal, inflammatory and neoplastic lung. Ex vivo MPM imaging of intrinsic two-photon excited fluorescence was performed on mouse and canine neoplastic, inflammatory and tumor-free lung sites. Results showed that MPM detected microanatomical differences between tumor-free and neoplastic lung tissue similar to standard histopathology but without the need for tissue processing. Furthermore, inflammatory sites displayed a distinct red-shifted fluorescence compared to neoplasms in both mouse and canine lung, and adenocarcinomas displayed a less pronounced fluorescence emission in the 500 to 550 nm region compared to adenomas in mouse models of lung cancer. These spectral distinctions were also confirmed by two-photon excited fluorescence microspectroscopy. We demonstrate the feasibility of applying MPM imaging of intrinsic fluorescence for the differentiation of lung neoplasms, inflammatory and tumor-free lung, which motivates the application of multiphoton endoscopy for the in situ imaging of lung nodules.
Genetics | 2012
Marsha D. Wallace; Adam D. Pfefferle; Lishuang Shen; Adrian J. McNairn; Ethan Cerami; Barbara L. Fallon; Vera D. Rinaldi; Teresa L. Southard; Charles M. Perou; John C. Schimenti
Identifying genomic alterations driving breast cancer is complicated by tumor diversity and genetic heterogeneity. Relevant mouse models are powerful for untangling this problem because such heterogeneity can be controlled. Inbred Chaos3 mice exhibit high levels of genomic instability leading to mammary tumors that have tumor gene expression profiles closely resembling mature human mammary luminal cell signatures. We genomically characterized mammary adenocarcinomas from these mice to identify cancer-causing genomic events that overlap common alterations in human breast cancer. Chaos3 tumors underwent recurrent copy number alterations (CNAs), particularly deletion of the RAS inhibitor Neurofibromin 1 (Nf1) in nearly all cases. These overlap with human CNAs including NF1, which is deleted or mutated in 27.7% of all breast carcinomas. Chaos3 mammary tumor cells exhibit RAS hyperactivation and increased sensitivity to RAS pathway inhibitors. These results indicate that spontaneous NF1 loss can drive breast cancer. This should be informative for treatment of the significant fraction of patients whose tumors bear NF1 mutations.
Cancer Cell | 2016
Hui Jing; Jing Hu; Bin He; Yashira L. Negrón Abril; Jack Stupinski; Keren Weiser; Marisa Carbonaro; Ying-Ling Chiang; Teresa L. Southard; Paraskevi Giannakakou; Robert S. Weiss; Hening Lin
Targeting sirtuins for cancer treatment has been a topic of debate due to conflicting reports and lack of potent and specific inhibitors. We have developed a thiomyristoyl lysine compound, TM, as a potent SIRT2-specific inhibitor with a broad anticancer effect in various human cancer cells and mouse models of breast cancer. Mechanistically, SIRT2 inhibition promotes c-Myc ubiquitination and degradation. The anticancer effect of TM correlates with its ability to decrease c-Myc level. TM had limited effects on non-cancerous cells and tumor-free mice, suggesting that cancer cells have an increased dependency on SIRT2 that can be exploited for therapeutic benefit. Our studies demonstrate that SIRT2-selective inhibitors are promising anticancer agents and may represent a general strategy to target certain c-Myc-driven cancers.
Stem Cell Research & Therapy | 2012
Lauren V. Schnabel; Christian Abratte; John C. Schimenti; Teresa L. Southard; Lisa A. Fortier
IntroductionThe influence of genetic background on the ability to generate induced pluripotent stem cells (iPSCs) has the potential to impact future applications, but has yet to be examined in detail. The purpose of this study was to determine if genetic background affects the efficiency of generating iPSCs during early reprograming as well as the pluripotent stability of the iPSCs during later stages of reprograming.MethodsMouse embryonic fibroblasts (MEFs) were isolated from six strains of mice (NON/LtJ; C57BL/6J; DBA/2J; BALB/cJ; 129S1/SvlmJ; CAST/EiJ) that were selected based on genetic diversity and differences in ability to produce embryonic stem cell (ESC) lines. MEFs were reprogramed via doxycycline-inducible lentiviral transduction of murine Oct4, Klf4, Sox2, and c-Myc. Differences in efficiency to generate iPSCs were assessed by comparing the total number of colonies, the percentage of colonies positive for alkaline phosphatase staining and the percentage of cells positive for SSEA1. iPSC colonies were expanded to establish doxycycline-independent cell lines whose pluripotency was then evaluated via ability to form teratomas in NOD.CB17-Prkdcscid /J mice. Proliferation of non-transduced parent MEFs from each strain was also examined over ten days under conditions that simulated reprograming.ResultsNON/LtJ and CAST/EiJ strains were more efficient than other strains in generating iPSCs for all parameters measured and parent MEFs from these strains were more proliferative than those from other strains. Doxycycline-independent iPSC lines were established using standard conditions for all strains except BALB/cJ, which required a higher concentration (5x) of leukemia inhibitory factor (LIF). iPSCs from all strains were capable of producing teratomas in NOD.CB17-Prkdcscid /J mice.ConclusionsThe results of this study suggest that genetic background does affect iPSC generation and pluripotent stability. In addition, our results demonstrate that strain differences in efficiency to generate iPSCs during the early stages of reprograming are correlated with those observed in proliferation of parent MEFs. These findings have important implications both for future iPSC applications as well as for future investigation into determining the genes responsible for reprograming efficiency and stability.
Regenerative Medicine | 2014
Lauren V. Schnabel; Christian Abratte; John C. Schimenti; M. Julia B. Felippe; Jennifer M. Cassano; Teresa L. Southard; Jessica A. Cross; Lisa A. Fortier
AIM To evaluate the in vitro immunogenic and immunomodulatory properties of induced pluripotent stem cells (iPSCs) compared with bone marrow-derived mesenchymal stromal cells (MSCs). MATERIALS & METHODS Mouse embryonic fibroblasts (MEFs) were isolated from C3HeB/FeJ and C57BL/6J mice, and reprogrammed to generate iPSCs. Mixed leukocyte reactions were performed using MHC-matched and -mismatched responder leukocytes and stimulator leukocytes, iPSCs or MSCs. To assess immunogenic potential, iPSCs and MSCs were used as stimulator cells for responder leukocytes. To assess immunomodulatory properties, iPSCs and MSCs were cultured in the presence of stimulator and responder leukocytes. MEFs were used as a control. RESULTS iPSCs had similar immunogenic properties but more potent immunomodulatory effects than MSCs. Co-culture of MHC-mismatched leukocytes with MHC-matched iPSCs resulted in significantly less responder T-cell proliferation than observed for MHC-mismatched leukocytes alone and at more responder leukocyte concentrations than with MSCs. In addition, MHC-mismatched iPSCs significantly reduced responder T-cell proliferation when co-cultured with MHC-mismatched leukocytes, while MHC-mismatched MSCs did not. CONCLUSION These results provide important information when considering the use of iPSCs in place of MSCs in both regenerative and transplantation medicine.
Oncogene | 2014
Marsha D. Wallace; Teresa L. Southard; Kerry J. Schimenti; John C. Schimenti
Defective DNA replication can result in genomic instability, cancer and developmental defects. To understand the roles of DNA damage response (DDR) genes on carcinogenesis in mutants defective for core DNA replication components, we utilized the Mcm4Chaos3/Chaos3 (‘Chaos3’) mouse model that, by virtue of an amino-acid alteration in MCM4 that destabilizes the MCM2-7 DNA replicative helicase, has fewer dormant replication origins and an increased number of stalled replication forks. This leads to genomic instability and cancer in most Chaos3 mice. We found that animals doubly mutant for Chaos3 and components of the ataxia telangiectasia-mutated (ATM) double-strand break response pathway (Atm, p21/Cdkn1a and Chk2/Chek2) had decreased tumor latency and/or increased tumor susceptibility. Tumor latency and susceptibility differed between genetic backgrounds and genders, with females demonstrating an overall greater cancer susceptibility to Atm and p21 deficiency than males. Atm deficiency was semilethal in the Chaos3 background and impaired embryonic fibroblast proliferation, suggesting that ATM drug inhibitors might be useful against tumors with DNA replication defects. Hypomorphism for the 9–1–1 component Hus1 did not affect tumor latency or susceptibility in Chaos3 animals, and tumors in these mice did not exhibit impaired ATR pathway signaling. These and other data indicate that under conditions of systemic replication stress, the ATM pathway is particularly important both for cancer suppression and viability during development.
Journal of Neurosurgery | 2012
George K. Lewis; Zachary R. Schulz; Susan Pannullo; Teresa L. Southard; William L. Olbricht
OBJECT In convection-enhanced delivery (CED), drugs are infused locally into tissue through a cannula inserted into the brain parenchyma to enhance drug penetration over diffusion strategies. The purpose of this study was to demonstrate the feasibility of ultrasound-assisted CED (UCED) in the rodent brain in vivo using a novel, low-profile transducer cannula assembly (TCA) and portable, pocket-sized ultrasound system. METHODS Forty Sprague-Dawley rats (350-450 g) were divided into 2 equal groups (Groups 1 and 2). Each group was divided again into 4 subgroups (n = 5 in each). The caudate of each rodent brain was infused with 0.25 wt% Evans blue dye (EBD) in phosphate-buffered saline at 2 different infusion rates of 0.25 μl/minute (Group 1), and 0.5 μl/minute (Group 2). The infusion rates were increased slowly over 10 minutes from 0.05 to 0.25 μl/minute (Group 1) and from 0.1 to 0.5 μl/minute (Group 2). The final flow rate was maintained for 20 minutes. Rodents in the 4 control subgroups were infused using the TCA without ultrasound and without and with microbubbles added to the infusate (CED and CED + MB, respectively). Rodents in the 4 UCED subgroups were infused without and with microbubbles added to the infusate (UCED and UCED + MB) using the TCA with continuous-wave 1.34-MHz low-intensity ultrasound at a total acoustic power of 0.11 ± 0.005 W and peak spatial intensity at the cannula tip of 49.7 mW/cm(2). An additional 4 Sprague-Dawley rats (350-450 g) received UCED at 4 different and higher ultrasound intensities at the cannula tip ranging from 62.0 to 155.0 mW/cm(2) for 30 minutes. The 3D infusion distribution was reconstructed using MATLAB analysis. Tissue damage and morphological changes to the brain were assessed using H & E. RESULTS The application of ultrasound during infusion (UCED and UCED + MB) improved the volumetric distribution of EBD in the brain by a factor of 2.24 to 3.25 when there were no microbubbles in the infusate and by a factor of 1.16 to 1.70 when microbubbles were added to the infusate (p < 0.001). On gross and histological examination, no damage to the brain tissue was found for any acoustic exposure applied to the brain. CONCLUSIONS The TCA and ultrasound device show promise to improve the distribution of infused compounds during CED. The results suggest further studies are required to optimize infusion and acoustic parameters for small compounds and for larger molecular weight compounds that are representative of promising antitumor agents. In addition, safe levels of ultrasound exposure in chronic experiments must be determined for practical clinical evaluation of UCED. Extension of these experiments to larger animal models is warranted to demonstrate efficacy of this technique.
PLOS Genetics | 2014
Yunhai Luo; Suzanne A. Hartford; Ruizhu Zeng; Teresa L. Southard; Naoko Shima; John C. Schimenti
Genome maintenance in germ cells is critical for fertility and the stable propagation of species. While mechanisms of meiotic DNA repair and chromosome behavior are well-characterized, the same is not true for primordial germ cells (PGCs), which arise and propagate during very early stages of mammalian development. Fanconi anemia (FA), a genomic instability syndrome that includes hypogonadism and testicular failure phenotypes, is caused by mutations in genes encoding a complex of proteins involved in repair of DNA lesions associated with DNA replication. The signaling mechanisms underlying hypogonadism and testicular failure in FA patients or mouse models are unknown. We conducted genetic studies to show that hypogonadism of Fancm mutant mice is a result of reduced proliferation, but not apoptosis, of PGCs, resulting in reduced germ cells in neonates of both sexes. Progressive loss of germ cells in adult males also occurs, overlaid with an elevated level of meiotic DNA damage. Genetic studies indicated that ATM-p53-p21 signaling is partially responsible for the germ cell deficiency.