Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Teresa Musumeci is active.

Publication


Featured researches published by Teresa Musumeci.


Journal of Pharmacy and Bioallied Sciences | 2011

Biomembrane models and drug-biomembrane interaction studies: Involvement in drug design and development.

Rosario Pignatello; Teresa Musumeci; Livia Basile; Claudia Carbone; Giovanni Puglisi

Contact with many different biological membranes goes along the destiny of a drug after its systemic administration. From the circulating macrophage cells to the vessel endothelium, to more complex absorption barriers, the interaction of a biomolecule with these membranes largely affects its rate and time of biodistribution in the body and at the target sites. Therefore, investigating the phenomena occurring on the cell membranes, as well as their different interaction with drugs in the physiological or pathological conditions, is important to exploit the molecular basis of many diseases and to identify new potential therapeutic strategies. Of course, the complexity of the structure and functions of biological and cell membranes, has pushed researchers toward the proposition and validation of simpler two- and three-dimensional membrane models, whose utility and drawbacks will be discussed. This review also describes the analytical methods used to look at the interactions among bioactive compounds with biological membrane models, with a particular accent on the calorimetric techniques. These studies can be considered as a powerful tool for medicinal chemistry and pharmaceutical technology, in the steps of designing new drugs and optimizing the activity and safety profile of compounds already used in the therapy.


International Journal of Pharmaceutics | 2013

Polymeric nanoparticles augment the ocular hypotensive effect of melatonin in rabbits.

Teresa Musumeci; Claudio Bucolo; Claudia Carbone; Rosario Pignatello; Filippo Drago; Giovanni Puglisi

Melatonin, a neurohormone secreted by the pineal gland, is able to modulate intraocular pressure (IOP). The aim of this study was to generate nanoparticle (NPs) sustained release formulations that allow to extend the pre-corneal residence time of melatonin, thus prolonging its pharmacological effects. Poly(D,L-lactide-co-glycolide) (PLGA) and PLGA-poly(ethylenglycole) (PEG) nanoparticles (NPs) were used to prepare the new melatonin formulations. Mean particle diameter and zeta potential, determined after freeze-drying in the presence of glucose as a cryoprotectant, ranged between 100 and 400 nm and -32.2/-8.2 mV, respectively for PLGA and PLGA-PEG NPs. Melatonin loading ranged between 44% and 80%. DSC analysis showed a homogeneous molecular dispersion of the drug in the NPs matrix. The hypotensive effect was evaluated by measuring IOP during 24h after instillation in the rabbit eye, in comparison with a melatonin aqueous solution at the same concentration (0.08%, w/v). The tested NPs showed good ocular tolerability in rabbit eye using biomicroscopy. Melatonin-loaded PLGA-PEG NPs were the most effective in reducing IOP up to 8h (maximum IOP reduction: 5 mmHg).


European Journal of Pharmaceutics and Biopharmaceutics | 2012

Curcumin loaded NLC induces histone hypoacetylation in the CNS after intraperitoneal administration in mice.

Carmelo Puglia; Giuseppina Frasca; Teresa Musumeci; Giovanni Puglisi; Francesco Bonina; Santina Chiechio

The natural p300-specific histone acetyltransferase (HAT) inhibitor, curcumin (CUR), has been widely investigated for its potential therapeutic effect as an anticancer and anti-inflammatory agent. Notwithstanding this interesting pharmacological profile, CUR shows some drawbacks, such as poor absorption and a very fast metabolism and elimination, that limit its clinical use. Aim of the present study was to formulate CUR loaded nanostructured lipid carriers (NLC-CUR) in order to improve the bioavailability and stability of this compound after systemic administration with increased effects in the central nervous system (CNS). NLC-CUR were prepared and characterized on their physicochemical properties by PCS and DSC analyses. Thus, NLC-CUR were systemically injected and the effects in the CNS were compared with a CUR control formulation containing 0.05% DMSO (DMSO-CUR). Our results demonstrate that CUR is able to decrease histone acetylation in the CNS when included in NLCs. Western blot analysis shows that intraperitoneal injection of NLC-CUR (100mg/kg) in mice induces a marked hypoacetylation of histone 4 (H4) at lysine 12 (K12) in the spinal cord compared with control group. Notably, DMSO-CUR (100mg/kg) did not change the H4K12 acetylation level in the CNS. Our study suggests a novel approach to ameliorate the pharmacokinetics of CUR that allows a better permeation in the CNS.


BMC Cancer | 2008

Paclitaxel loading in PLGA nanospheres affected the in vitro drug cell accumulation and antiproliferative activity

Luisa Vicari; Teresa Musumeci; Ignazio Giannone; Luana Adamo; Concetta Conticello; Ruggero De Maria; Rosario Pignatello; Giovanni Puglisi; Massimo Gulisano

BackgroundPTX is one of the most widely used drug in oncology due to its high efficacy against solid tumors and several hematological cancers. PTX is administered in a formulation containing 1:1 Cremophor® EL (polyethoxylated castor oil) and ethanol, often responsible for toxic effects. Its encapsulation in colloidal delivery systems would gain an improved targeting to cancer cells, reducing the dose and frequency of administration.MethodsIn this paper PTX was loaded in PLGA NS. The activity of PTX-NS was assessed in vitro against thyroid, breast and bladder cancer cell lines in cultures. Cell growth was evaluated by MTS assay, intracellular NS uptake was performed using coumarin-6 labelled NS and the amount of intracellular PTX was measured by HPLC.ResultsNS loaded with 3% PTX (w/w) had a mean size < 250 nm and a polydispersity index of 0.4 after freeze-drying with 0.5% HP-Cyd as cryoprotector. PTX encapsulation efficiency was 30% and NS showed a prolonged drug release in vitro. An increase of the cytotoxic effect of PTX-NS was observed with respect to free PTX in all cell lines tested.ConclusionThese findings suggest that the greater biological effect of PTX-NS could be due to higher uptake of the drug inside the cells as shown by intracellular NS uptake and cell accumulation studies.


Colloids and Surfaces B: Biointerfaces | 2014

The critical role of didodecyldimethylammonium bromide on physico-chemical, technological and biological properties of NLC

C. Carbone; Agata Campisi; D. Manno; Antonio Serra; Michela Spatuzza; Teresa Musumeci; Roberta Bonfanti; Giovanni Puglisi

Exploiting the experimental factorial design and the potentiality of Turbiscan AG Station, we developed and characterized unmodified and DDAB-coated NLC prepared by a low energy organic solvent free phase inversion temperature technique. A 22 full factorial experimental design was developed in order to study the effects of two independent variables (DDAB and ferulic acid) and their interaction on mean particle size and zeta potential values. The factorial planning was validated by ANOVA analysis; the correspondence between the predicted values of size and zeta and those measured experimentally confirmed the validity of the design and the equation applied for its resolution. The DDAB-coated NLC were significantly affected in their physico-chemical properties by the presence of DDAB, as showed by the results of the experimental design. The coated NLC showed higher physical stability with no particles aggregation compared to the unmodified NLC, as demonstrated by Turbiscan(®) AGS measurements. X-ray diffraction, Raman spectroscopy and Cryo-TEM images allowed us to assert that DDAB plays a critical role in increasing the lipids structural order with a consequent enhancement of the NLC physical stability. Furthermore, the results of the in vitro biological studies allow the revisiting of the role of DDAB to the benefit of glioblastoma treatment, due to its efficacy in increasing the NLC uptake and reducing the viability of human glioblastoma cancer cells (U87MG).


Experimental Biology and Medicine | 2012

Antioxidant potential of different melatonin-loaded nanomedicines in an experimental model of sepsis.

Giovanni Li Volti; Teresa Musumeci; Rosario Pignatello; Paolo Murabito; Ignazio Barbagallo; Claudia Carbone; Antonino Gullo; Giovanni Puglisi

Oxidative stress has been shown to play a major role in the complex pathophysiological processes leading to organ failure during sepsis. The aim of the present research was to evaluate the effect of different melatonin nanoparticle (NP) carriers in an experimental animal model of sepsis. Poly-d,l-lactide-co-glycolide (PLGA [NP-A]) and polyethylene glycol-co-(poly-d,l-lactide-co-glycolide) (PLGA-PEG [NP-B]) were used to obtain melatonin-loaded nanocarriers (10 mg/kg). Oxidative stress was measured in tissue homogenates by measuring heme oxygenase-1 (HO-1) expression, total thiol groups and lipid hydroperoxides (LOOH). In vitro NPs showed a long lag time followed by a controlled release of melatonin. All the different melatonin formulations restored total thiol group levels to those of controls in all the examined organs, with no significant changes among them. Both melatonin NP formulations significantly decreased LOOH levels when compared with sepsis vehicle animals. The stealth formulation NP-B was able to produce a more significant reduction in LOOH levels in the heart, lung and liver when compared with NP-A. No significant changes were observed between the two NP formulations in the kidney. Interestingly, HO-1 expression was differently affected following treatment with various melatonin formulations. The NP-B formulation was more effective in inducing HO-1 protein compared with free melatonin and NP-A, with the exception of the kidney. Taken together, our results show that melatonin possesses a significant antioxidant activity during sepsis and that it is possible to improve this ability by delivering the compound with specific drug delivery systems.


Journal of Pharmaceutical Sciences | 2014

Nose-to-Brain Delivery: Evaluation of Polymeric Nanoparticles on Olfactory Ensheathing Cells Uptake

Teresa Musumeci; Rosalia Pellitteri; Michela Spatuzza; Giovanni Puglisi

The nasal route has received a great deal of attention as a convenient and reliable method for the brain target on administration of drugs. When drugs are loaded into nanoparticles (NPs) the interaction with mucosa transports directly into the brain, skipping the blood-brain barrier and achieving rapid cerebrospinal fluid levels. Poly-lactic acid (PLA), poly-lactic-co-glycolic acid (PLGA), and chitosan (CS) were chosen to prepare NPs. After optimization of CS nanocarriers, our goal was to evaluate the different type of NPs uptake into olfactory ensheathing cells (OECs). We then correlated obtained biological data to zeta potential measurements of cells treated with NPs. Rodhamine-loaded NPs were used to study the uptake of OECs carried out by confocal microscopy at different times (1, 2, and 4 h). Our results showed that uptake of rodhamine-NPs by OECs was time dependent and it was influenced by the carrier charge. Confocal imaging of OECs demonstrated that NPPLGA showed a higher increase in uptake compared with NPPLA and NPCS after 1 h and it increased at 2-4 h. Zeta potential values of treated cells were more amplified with respect to untreated cells. The highest values were showed by unloaded NPPLGA, confirming microscopy data.


Expert Opinion on Drug Delivery | 2012

Chemical and technological delivery systems for idebenone: a review of literature production

Claudia Carbone; Rosario Pignatello; Teresa Musumeci; Giovanni Puglisi

Introduction: Idebenone (IDE) is an antioxidant compound, structurally related to coenzyme Q10. Its therapeutic potential is growing in different application areas, as demonstrated by the number of experimental works and patents produced in very recent years. Areas covered: Cyclodextrin inclusion complexes, liposomes, microemulsions, prodrugs, polymeric and lipid nanoparticles have been explored to achieve different goals, such as topical administration, brain targeting or increasing the bioavailability of this highly lipophilic drug. This review summarizes the results of works published in the last 20 years for the delivery and targeting of this drug. Expert opinion: A direct comparison of the different carrier systems is not easy and could not even be significant, due to the large variables existing among them. However, the different forms of delivery can help increase idebenone solubility, stability and biochemical activity. Further studies will be developed in order to improve the controlled release and targeting of idebenone.


European Journal of Medicinal Chemistry | 2011

Effects of external phase on D-cycloserine loaded W/O nanocapsules prepared by the interfacial polymerization method

Teresa Musumeci; Cinzia Anna Ventura; Claudia Carbone; Rosario Pignatello; Giovanni Puglisi

Water in oil (W/O) polybutylcyanoacrylate nanocapsules containing D-cycloserine (D-CS) for intranasal delivery were prepared by the interfacial polymerization method. Different oils, as external phase, for the preparation of the initial W/O miniemulsions were used and their effect on mean size and other physico-chemical properties were evaluated by photon correlation spectroscopy (PCS) and scanning electron microscopy (SEM) analysis. Two probes at different hydrophilicity were used to verify the internal aqueous nature of the core. Both miniemulsions and nanocapsules mean size and polydispersity index were influenced by the used external phase. Different entrapment efficiency were obtained for D-cycloserine-loaded nanocapsules correlated to the used oil [ranging from 39 to 51% encapsulation efficiency (E.E.)]. In vitro drug release showed an initial burst effect (ranging from 20 to 40%) followed by a slow release of D-CS for all preparations. This study demonstrated that many relevant physico-chemical and technological properties of polybutylcyanoacrylate nanocapsules prepared by interfacial polymerization of miniemulsions are significantly influenced by the external oil phase used.


Colloids and Surfaces B: Biointerfaces | 2015

Eco-friendly aqueous core surface-modified nanocapsules.

Claudia Carbone; Teresa Musumeci; Maria Rosaria Lauro; Giovanni Puglisi

In this work, positively charged nanocapsules have been developed for potential ocular delivery exploiting the deposition of PLA onto the droplet surface of a W/O nanoemulsion prepared by the reversed procedure of the PIT method. PLA in combination with different amounts of various oils and surfactants have been studied in order to select the best formulation for polymeric nanocapsule preparation. The traditional visual observation together with the Turbiscan(®) technology were exploited in order to identify the best combination of polymer/oil for nanocapsule preparation. Two different primary surfactants (Span(®) 60 and Span(®) 80) have been tested to select their influence on the field of existence of the nanoemulsion by the construction of the pseudoternary phase diagrams. Cationic hybrid NC have been prepared by the addition of a coating layer of DDAB. The physico-chemical and morphological properties of all the prepared nanocapsules have been evaluated and compared by PCS, DSC and AFM. Therefore, positively charged nanocapsules can be easily prepared by a simple eco-friendly technique that exploits biocompatible materials avoiding a large input of mechanical energy as a potential ocular delivery systems for hydrophilic compounds or gene materials.

Collaboration


Dive into the Teresa Musumeci's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Barbara Ruozi

University of Modena and Reggio Emilia

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge