Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Teresa Noel is active.

Publication


Featured researches published by Teresa Noel.


Free Radical Biology and Medicine | 2011

2-Mercaptoethane sulfonate prevents doxorubicin-induced plasma protein oxidation and TNF-α release: implications for the reactive oxygen species-mediated mechanisms of chemobrain.

Christopher D. Aluise; Sumitra Miriyala; Teresa Noel; Rukhsana Sultana; Paiboon Jungsuwadee; Tamara J. Taylor; Jian Cai; William M. Pierce; Mary Vore; Jeffrey A. Moscow; Daret K. St. Clair; D. Allan Butterfield

Doxorubicin (DOX), an anthracycline used to treat a variety of cancers, is known to generate intracellular reactive oxygen species. Moreover, many patients who have undergone chemotherapy complain of cognitive dysfunction often lasting years after cessation of the chemotherapy. Previously, we reported that intraperitoneal administration of DOX led to elevated TNF-α and oxidative stress in the plasma and brain of mice. However, the mechanisms involved in nontargeted tissue damage remain unknown. In this study, we measured plasma oxidative stress and cytokine levels in patients treated with DOX. We observed increased plasma protein carbonylation and elevation of TNF-α 6 h after DOX administration in the context of multiagent chemotherapy regimens. Importantly, patients not treated coincidentally with 2-mercaptoethane sulfonate (MESNA) showed statistically significantly increased plasma protein-bound 4-hydroxynonenal, whereas those who had been coincidentally treated with MESNA as part of their multiagent chemotherapy regimen did not, suggesting that concomitant administration of the antioxidant MESNA with DOX prevents intravascular oxidative stress. We demonstrate in a murine model that MESNA suppressed DOX-induced increased plasma oxidative stress indexed by protein carbonyls and protein-bound HNE, and also suppressed DOX-induced increased peripheral TNF-α levels. A direct interaction between DOX and MESNA was demonstrated by MESNA suppression of DOX-induced DCF fluorescence. Using redox proteomics, we identified apolipoprotein A1 (APOA1) in both patients and mice after DOX administration as having increased specific carbonyl levels. Macrophage stimulation studies showed that oxidized APOA1 increased TNF-α levels and augmented TNF-α release by lipopolysaccharide, effects that were prevented by MESNA. This study is the first to demonstrate that DOX oxidizes plasma APOA1, that oxidized APOA1 enhances macrophage TNF-α release and thus could contribute to potential subsequent TNF-α-mediated toxicity, and that MESNA interacts with DOX to block this mechanism and suggests that MESNA could reduce systemic side effects of DOX.


Free Radical Biology and Medicine | 2008

Pharmacokinetics of the potent redox-modulating manganese porphyrin, MnTE-2-PyP5+, in plasma and major organs of B6C3F1 mice

Ivan Spasojevic; Yumin Chen; Teresa Noel; Ping Fan; Lichun Zhang; Júlio S. Rebouças; Daret K. St. Clair; Ines Batinic-Haberle

Mn(III) tetrakis(N-ethylpyridinium-2-yl)porphyrin, MnTE-2-PyP(5+), a potent catalytic superoxide and peroxynitrite scavenger, has been beneficial in several oxidative stress-related diseases thus far examined. Pharmacokinetic studies are essential for the better assessment of the therapeutic potential of MnTE-2-PyP(5+) and similar compounds, as well as for the modulation of their bioavailability and toxicity. Despite high hydrophilicity, this drug entered mitochondria after a single 10 mg/kg intraperitoneal injection at levels high enough (5.1 muM; 2.95 ng/mg protein) to protect against superoxide/peroxynitrite damage. Utilizing the same analytical approach, which involves the reduction of MnTE-2-PyP(5+) followed by the exchange of Mn(2+) with Zn(2+) and HPLC/fluorescence detection of ZnTE-2-PyP(4+), we measured levels of MnTE-2-PyP(5+) in mouse plasma, liver, kidney, lung, heart, spleen, and brain over a period of 7 days after a single intraperitoneal injection of 10 mg/kg. Two B6C3F1 female mice per time point were used. The pharmacokinetic profile in plasma and organs was complex; thus a noncompartmental approach was utilized to calculate the area under the curve, c(max), t(max), and drug elimination half-time (t(1/2)). In terms of levels of MnTE-2-PyP(5+) found, the organs can be classified into three distinct groups: (1) high levels (kidney, liver, and spleen), (2) moderate levels (lung and heart), and (3) low levels (brain). The maximal levels in plasma, kidney, spleen, lung, and heart are reached within 45 min, whereas in the case of liver a prolonged absorption phase was observed, with the maximal concentration reached at 8 h. Moreover, accumulation of the drug in brain continued beyond the time of the experiment (7 days) and is likely to be driven by the presence of negatively charged phospholipids. For tissues other than brain, a slow elimination phase (single exponential decay, t(1/2)=60 to 135 h) was observed. The calculated pharmacokinetic parameters will be used to design optimal dosing regimens in future preclinical studies utilizing this and similar compounds.


PLOS ONE | 2011

p53 Regulates Oxidative Stress-Mediated Retrograde Signaling: A Novel Mechanism for Chemotherapy-Induced Cardiac Injury

Joyce M. Velez; Sumitra Miriyala; Ramaneeya Nithipongvanitch; Teresa Noel; Chotiros Plabplueng; Terry D. Oberley; Paiboon Jungsuwadee; Holly Van Remmen; Mary Vore; Daret K. St. Clair

The side effects of cancer therapy on normal tissues limit the success of therapy. Generation of reactive oxygen species (ROS) has been implicated for numerous chemotherapeutic agents including doxorubicin (DOX), a potent cancer chemotherapeutic drug. The production of ROS by DOX has been linked to DNA damage, nuclear translocation of p53, and mitochondrial injury; however, the causal relationship and molecular mechanisms underlying these events are unknown. The present study used wild-type (WT) and p53 homozygous knock-out (p53−/−) mice to investigate the role of p53 in the crosstalk between mitochondria and nucleus. Injecting mice with DOX (20 mg/kg) causes oxidative stress in cardiac tissue as demonstrated by immunogold analysis of the levels of 4-hydroxy-2′-nonenal (4HNE)-adducted protein, a lipid peroxidation product bound to proteins. 4HNE levels increased in both nuclei and mitochondria of WT DOX-treated mice but only in nuclei of DOX-treated p53(−/−) mice, implicating a critical role for p53 in causing DOX-induced oxidative stress in mitochondria. The stress-activated protein c-Jun amino-terminal kinase (JNKs) was activated in response to increased 4HNE in WT mice but not p53(−/−) mice receiving DOX treatment, as determined by co-immunoprecipitation of HNE and pJNK. The activation of JNK in DOX treated WT mice was accompanied by Bcl-2 dissociation from Beclin in mitochondria and induction of type II cell death (autophagic cell death), as evidenced by an increase in LC3-I/LC-3-II ratio and γ-H2AX, a biomarker for DNA damage. The absence of p53 significantly reduces mitochondrial injury, assessed by quantitative morphology, and decline in cardiac function, assessed by left ventricular ejection fraction and fraction shortening. These results demonstrate that p53 plays a critical role in DOX-induced cardiac toxicity, in part, by the induction of oxidative stress mediated retrograde signaling.


Oncogene | 2012

Manganese superoxide dismutase is a mitochondrial fidelity protein that protects Polγ against UV-induced inactivation.

Bakthavatchalu; Dey S; Yong Xu; Teresa Noel; Jungsuwadee P; Holley Ak; Sanjit K. Dhar; Ines Batinic-Haberle; St Clair Dk

Manganese superoxide dismutase is a nuclear encoded primary antioxidant enzyme localized exclusively in the mitochondrial matrix. Genotoxic agents, such as ultraviolet (UV) radiation, generates oxidative stress and cause mitochondrial DNA (mtDNA) damage. The mtDNA polymerase (Polγ), a major constituent of nucleoids, is responsible for the replication and repair of the mitochondrial genome. Recent studies suggest that the mitochondria contain fidelity proteins and MnSOD constitutes an integral part of the nucleoid complex. However, it is not known whether or how MnSOD participates in the mitochondrial repair processes. Using skin tissue from C57BL/6 mice exposed to UVB radiation, we demonstrate that MnSOD has a critical role in preventing mtDNA damage by protecting the function of Polγ. Quantitative–PCR analysis shows an increase in mtDNA damage after UVB exposure. Immunofluorescence and immunoblotting studies demonstrate p53 translocation to the mitochondria and interaction with Polγ after UVB exposure. The mtDNA immunoprecipitation assay with Polγ and p53 antibodies in p53+/+ and p53−/− mice demonstrates an interaction between MnSOD, p53 and Polγ. The results suggest that these proteins form a complex for the repair of UVB-associated mtDNA damage. The data also demonstrate that UVB exposure injures the mtDNA D-loop in a p53-dependent manner. Using MnSOD-deficient mice we demonstrate that UVB-induced mtDNA damage is MnSOD dependent. Exposure to UVB results in nitration and inactivation of Polγ, which is prevented by addition of the MnSOD mimetic MnIIITE-2-PyP5+. These results demonstrate for the first time that MnSOD is a fidelity protein that maintains the activity of Polγ by preventing UVB-induced nitration and inactivation of Polγ. The data also demonstrate that MnSOD has a role along with p53 to prevent mtDNA damage.


Cancer Research | 2013

KEAP1 Is a Redox Sensitive Target That Arbitrates the Opposing Radiosensitive Effects of Parthenolide in Normal and Cancer Cells

Yong Xu; Fang Fang; Sumitra Miriyala; Peter A. Crooks; Terry D. Oberley; Luksana Chaiswing; Teresa Noel; Aaron K. Holley; Yanming Zhao; Kelley K. Kiningham; Daret K. St. Clair; William H. St. Clair

Elevated oxidative stress is observed more frequently in cancer cells than in normal cells. It is therefore expected that additional exposure to a low level of reactive oxygen species (ROS) will push cancer cells toward death, whereas normal cells might maintain redox homeostasis through adaptive antioxidant responses. We previously showed that parthenolide enhances ROS production in prostate cancer cells through activation of NADPH oxidase. The present study identifies KEAP1 as the downstream redox target that contributes to parthenolides radiosensitization effect in prostate cancer cells. In vivo, parthenolide increases radiosensitivity of mouse xenograft tumors but protects normal prostate and bladder tissues against radiation-induced injury. Mechanistically, parthenolide increases the level of cellular ROS and causes oxidation of thioredoxin (TrX) in prostate cancer cells, leading to a TrX-dependent increase in a reduced state of KEAP1, which in turn leads to KEAP1-mediated PGAM5 and Bcl-xL (BCL2L1) degradation. In contrast, parthenolide increases oxidation of KEAP1 in normal prostate epithelial cells, leading to increased Nrf2 (NFE2L2) levels and subsequent Nrf2-dependent expression of antioxidant enzymes. These results reveal a novel redox-mediated modification of KEAP1 in controlling the differential effect of parthenolide on tumor and normal cell radiosensitivity. Furthermore, they show it is possible to develop a tumor-specific radiosensitizing agent with radioprotective properties in normal cells.


Molecular Cancer Therapeutics | 2006

Tumor necrosis factor receptor deficiency exacerbated Adriamycin-induced cardiomyocytes apoptosis: an insight into the Fas connection

Yu-Chin Lien; Shu-Mei Lin; Ramaneeya Nithipongvanitch; Terry D. Oberley; Teresa Noel; Qing Zhao; Chotiros Daosukho; Daret K. St. Clair

Cardiomyopathy is a major dose-limiting factor for applications of Adriamycin, a potent chemotherapeutic agent. The present study tested the hypothesis that increased tumor necrosis factor (TNF)-α signaling via its receptors protects against Adriamycin-induced cardiac injury. We used mice in which both TNF receptor I and II have been selectively inactivated (DKO) with wild-type mice as controls. Morphometric studies of cardiac tissue following Adriamycin treatment revealed greater ultrastructural damage in cardiomyocyte mitochondria from DKO mice. Biochemical studies of cardiac tissues showed cytochrome c release and the increase in proapoptotic protein levels, suggesting that lack of TNF-α receptor I and II exacerbates Adriamycin-induced cardiac injury. The protective role of TNF receptor I and II was directly confirmed in isolated primary cardiomyocytes. Interestingly, following Adriamycin treatment, the levels of Fas decreased in the wild-type mice. In contrast, DKO mice had an increase in Fas levels and its downstream target, mitochondrial truncated Bid. These results suggested that TNF-α receptors play a critical role in cardioprotection by suppression of the mitochondrial-mediated associated cell death pathway. [Mol Cancer Ther 2006;5(2):261–9]


The Journal of Comparative Neurology | 2006

Overexpression of Neurotrophin 4 in Skin Enhances Myelinated Sensory Endings but Does Not Influence Sensory Neuron Number

Robin F. Krimm; Brian M. Davis; Teresa Noel; Kathryn M. Albers

The growth factors neurotrophin 4 (NT4) and brain‐derived neurotrophic factor (BDNF) are expressed in the developing skin, activate the trkB tyrosine kinase receptor, and influence the development and survival of specific types of sensory afferents. Whether each factor is capable of regulating the same or overlapping populations of cutaneous afferents during development is unknown. A previous study of mice overexpressing BDNF in the developing skin (BDNF‐OE mice) revealed that these animals exhibited increased hair follicle innervation, Meissner corpuscle size, and Merkel cell number in glabrous skin, although no change in the total number of sensory neurons was observed. To determine if NT4 affects cutaneous innervation in a manner similar to BDNF, transgenic mice overexpressing NT4 in skin, under the control of the keratin 14 gene promoter, were examined. Similar to BDNF‐OE mice, NT4‐OE mice had increased innervation to the skin but no increase in sensory neuron number in either the dorsal root ganglion or trigeminal ganglion. NT4 overexpression also enhanced hair follicle innervation and the size and density of innervation to Meissner corpuscles. Unlike BDNF overexpression, NT4 overexpression did not alter the number of Merkel cells in the glabrous skin, but it did enhance the number of myelinated axons in nerves projecting to skin. Thus, the same pattern of BDNF and NT4 overexpression within the skin produces phenotypes that are both similar and distinctive. J. Comp. Neurol. 498:455–465, 2006.


Cancer Research | 2006

Phospholipase C-δ1 Is a Critical Target for Tumor Necrosis Factor Receptor–Mediated Protection against Adriamycin-Induced Cardiac Injury

Yu-Chin Lien; Teresa Noel; Hua Liu; Arnold J. Stromberg; Kuey-Chu Chen; Daret K. St. Clair

The clinical application of adriamycin, an exceptionally good chemotherapeutic agent, is limited by its dose-related cardiomyopathy. Our recent study showed that tumor necrosis factor-alpha (TNF-alpha) receptors mediated cytoprotective signaling against adriamycin-induced mitochondrial injury and cardiomyocyte apoptosis. In the present study, we investigated the potential targets of TNF receptor-mediated cytoprotective signaling by global genome microarray analysis using wild-type and TNF receptor-deficient mice. Microarray analysis revealed that adriamycin treatment induced the down-regulation of several mitochondrial functions and energy production-related genes in double TNF receptor-deficient mice, notably, phospholipase C-delta1, a protein involved in fatty acid metabolism and calcium regulation. The role of phospholipase C-delta1 in TNF receptor-mediated cardioprotection against adriamycin-induced injury was evaluated by measuring changes in cardiac function using high-frequency ultrasound biomicroscopy. Selective inhibition of phospholipase C activity in wild-type mice by its inhibitor, U73122, exacerbated adriamycin-induced cardiac dysfunction. Inhibition of phospholipase C-delta1 resulted in the significant decrease of left ventricular ejection fraction and fractional shortening, and the decreased levels were similar to those observed in adriamycin-treated double TNF receptor-deficient mice. The data derived from the global genome analysis identified phospholipase C-delta1 as an important target for TNF receptors and revealed the critical role of TNF receptor signaling in the protection against adriamycin-induced cardiotoxicity.


Antioxidants & Redox Signaling | 2012

Lack of p53 Decreases Basal Oxidative Stress Levels in the Brain Through Upregulation of Thioredoxin-1, Biliverdin Reductase-A, Manganese Superoxide Dismutase, and Nuclear Factor Kappa-B

Eugenio Barone; Giovanna Cenini; Rukhsana Sultana; Fabio Di Domenico; Ada Fiorini; Marzia Perluigi; Teresa Noel; Chi Wang; Cesare Mancuso; Daret K. St. Clair; D. Allan Butterfield

AIMS The basal oxidative and nitrosative stress levels measured in cytosol, mitochondria, and nuclei as well as in the whole homogenate obtained from the brain of wild type (wt) and p53 knockout [p53((-/-))] mice were evaluated. We hypothesized that the loss of p53 could trigger the activation of several protective mechanisms such as those involving thioredoxin-1 (Thio-1), the heme-oxygenase-1/biliverdin reductase-A (HO-1/BVR-A) system, manganese superoxide dismutase (MnSOD), the IkB kinase type β (IKKβ)/nuclear factor kappa-B (NF-kB), and the nuclear factor-erythroid 2 (NF-E2) related factor 2 (Nrf-2). RESULTS A decrease of protein carbonyls, protein-bound 4-hydroxy-2-nonenal (HNE), and 3-nitrotyrosine (3-NT) was observed in the brain from p53((-/-)) mice compared with wt. Furthermore, we observed a significant increase of the expression levels of Thio-1, BVR-A, MnSOD, IKKβ, and NF-kB. Conversely a significant decrease of Nrf-2 protein levels was observed in the nuclear fraction isolated from p53((-/-)) mice. No changes were found for HO-1. INNOVATION This is the first study of basal oxidative/nitrosative stress in in vivo conditions of brain obtained from p53((-/-)) mice. New insights into the role of p53 in oxidative stress have been gained. CONCLUSION We demonstrated, for the first time, that the lack of p53 reduces basal oxidative stress levels in mice brain. Due to the pivotal role that p53 plays during cellular stress response our results provide new insights into novel therapeutic strategies to modulate protein oxidation and lipid peroxidation having p53 as a target. The implications of this work are profound, particularly for neurodegenerative disorders.


Oncogene | 2015

Manganese superoxide dismutase deficiency triggers mitochondrial uncoupling and the Warburg effect

Yong Xu; Sumitra Miriyala; Fang Fang; Vasudevan Bakthavatchalu; Teresa Noel; D M Schell; C. C. Wang; W. St. Clair; D.K. St. Clair

Manganese superoxide dismutase (MnSOD) is a mitochondrially localized primary antioxidant enzyme, known to be essential for the survival of aerobic life and to have important roles in tumorigenesis. Here, we show that MnSOD deficiency in skin tissues of MnSOD-heterozygous knockout (Sod2+/−) mice leads to increased expresson of uncoupling proteins (UCPs). When MnSOD is deficient, superoxide radical and its resulting reactive oxygen species (ROS) activate ligand binding to peroxisome proliferator-activated receptor alpha (PPARα), suggesting that the activation of PPARα signaling is a major mechanism underlying MnSOD-dependent UCPs expression that consequently triggers the PI3K/Akt/mTOR pathway, leading to increased aerobic glycolysis. Knockdown of UCPs and mTOR suppresses lactate production and increases ATP levels, suggesting that UCPs contribute to increased glycolysis. These results highlight the existence of a free radical-mediated mechanism that activates mitochondria uncoupling to reduce ROS production, which precedes the glycolytic adaptation described as the Warburg Effect.

Collaboration


Dive into the Teresa Noel's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Yong Xu

University of Kentucky

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Mary Vore

University of Kentucky

View shared research outputs
Researchain Logo
Decentralizing Knowledge