Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Teresa Nolesini is active.

Publication


Featured researches published by Teresa Nolesini.


Bulletin of Volcanology | 2014

The ground-based InSAR monitoring system at Stromboli volcano: linking changes in displacement rate and intensity of persistent volcanic activity

Federico Di Traglia; Emanuele Intrieri; Teresa Nolesini; Federica Bardi; Chiara Del Ventisette; Federica Ferrigno; Sara Frangioni; William Frodella; Giovanni Gigli; Alessia Lotti; Carlo Tacconi Stefanelli; Luca Tanteri; Davide Leva; Nicola Casagli

Stromboli volcano (Aeolian Archipelago, Southern Italy) experienced an increase in its volcanic activity from late December 2012 to March 2013, when it produced several lava overflows, major Strombolian explosions, crater-wall collapses pyroclastic density currents and intense spatter activity. An analysis of the displacement of the NE portion of the summit crater terrace and the unstable NW flank of the volcano (Sciara del Fuoco depression) has been performed with a ground-based interferometric synthetic aperture radar (GBInSAR) by dividing the monitored part of the volcano into five sectors, three in the summit vents region and two in the Sciara del Fuoco. Changes in the displacement rate were observed in sectors 2 and 3. Field and thermal surveys revealed the presence of an alignment of fumaroles confirming the existence of an area of structural discontinuity between sectors 2 and 3. High displacement rates in sector 2 are interpreted to indicate the increase in the magmastatic pressure within the shallow plumbing systems, related to the rise of the magma level within the conduits, while increased displacement rates in sector 3 are connected to the lateral expansion of the shallow plumbing system. The increases and decreases in the displacement rate registered by the GBInSAR system in the upper part of the volcano have been used as a proxy for changes in the pressure conditions in the shallow plumbing system of Stromboli volcano and hence to forecast the occurrence of phases of higher-intensity volcanic activity.


Environmental Earth Sciences | 2016

Badland susceptibility assessment in Volterra municipality (Tuscany, Italy) by means of GIS and statistical analysis

Silvia Bianchini; Matteo Del Soldato; Lorenzo Solari; Teresa Nolesini; Fabio Pratesi; Sandro Moretti

Badlands can be defined as complex and peculiar types of erosional formations that develop in clayey environments and are mainly favoured by lithological and topographic features, as well as by markedly seasonal climate. This work aims at assessing badland susceptibility in Volterra municipality located in Tuscany region (Italy) by means of bivariate statistical analysis implemented in a geographic information system. The Volterra municipality is affected by intense soil erosion processes, including rill and gully erosion usually turned out as badland forms, mostly occurring on Pliocene–Pleistocene clayey sediments. Firstly, an inventory of 234 badland areas was produced on the basis of an available pre-existing database, integrated with the interpretation of aerial photographs and supported by a field survey. Badlands were distinguished in type A and type B, according to different evolutional stage, vegetation presence and consequently different landforms. Then, nine geoenvironmental factors supposed to be predisposing for badland occurrence were chosen and combined with the spatial frequency of badland areas derived from the inventory, through Information Value Statistic approach. The result was a badland susceptibility map that highlights a strong control of lithology, slope gradient and land use in conditioning badland development in the investigated area. The effectiveness of the performed model was demonstrated by a validation test computed through a receiver operating characteristics analysis. The outcomes of this work provide an updated badland database that is useful for soil erosion management and further land-use planning within the Volterra municipality.


Remote Sensing | 2015

Building Deformation Assessment by Means of Persistent Scatterer Interferometry Analysis on a Landslide-Affected Area: The Volterra (Italy) Case Study

Silvia Bianchini; Fabio Pratesi; Teresa Nolesini; Nicola Casagli

In recent years, space-borne InSAR (interferometric synthetic aperture radar) techniques have shown their capabilities to provide precise measurements of Earth surface displacements for monitoring natural processes. Landslides threaten human lives and structures, especially in urbanized areas, where the density of elements at risk sensitive to ground movements is high. The methodology described in this paper aims at detecting terrain motions and building deformations at the local scale, by means of satellite radar data combined with in situ validation campaigns. The proposed approach consists of deriving maximum settlement directions of the investigated buildings from displacement data revealed by radar measurements and then in the cross-comparison of these values with background geological data, constructive features and on-field evidence. This validation permits better understanding whether or not the detected movements correspond to visible and effective damages to buildings. The method has been applied to the southwestern sector of Volterra (Tuscany region, Italy), which is a landslide-affected and partially urbanized area, through the use of COSMO-SkyMed satellite images as input data. Moreover, we discuss issues and possible misinterpretations when dealing with PSI (Persistent Scatterer Interferometry) data referring to single manufactures and the consequent difficulty of attributing the motion rate to ground displacements, rather than to structural failures.


Landslides | 2017

Guidelines on the use of inverse velocity method as a tool for setting alarm thresholds and forecasting landslides and structure collapses

Tommaso Carlà; Emanuele Intrieri; Federico Di Traglia; Teresa Nolesini; Giovanni Gigli; Nicola Casagli

Predicting the time of failure is a topic of major concern in the field of geological risk management. Several approaches, based on the analysis of displacement monitoring data, have been proposed in recent years to deal with the issue. Among these, the inverse velocity method surely demonstrated its effectiveness in anticipating the time of collapse of rock slopes displaying accelerating trends of deformation rate. However, inferring suitable linear trend lines and deducing reliable failure predictions from inverse velocity plots are processes that may be hampered by the noise present in the measurements; data smoothing is therefore a very important phase of inverse velocity analyses. In this study, different filters are tested on velocity time series from four case studies of geomechanical failure in order to improve, in retrospect, the reliability of failure predictions: Specifically, three major landslides and the collapse of an historical city wall in Italy have been examined. The effects of noise on the interpretation of inverse velocity graphs are also assessed. General guidelines to conveniently perform data smoothing, in relation to the specific characteristics of the acceleration phase, are deduced. Finally, with the aim of improving the practical use of the method and supporting the definition of emergency response plans, some standard procedures to automatically setup failure alarm levels are proposed. The thresholds which separate the alarm levels would be established without needing a long period of neither reference historical data nor calibration on past failure events.


Scientific Reports | 2015

Shifts in the eruptive styles at Stromboli in 2010–2014 revealed by ground-based InSAR data

Federico Di Traglia; Maurizio Battaglia; Teresa Nolesini; Daniela Lagomarsino; Nicola Casagli

Ground-Based Interferometric Synthetic Aperture Radar (GBInSAR) is an efficient technique for capturing short, subtle episodes of conduit pressurization in open vent volcanoes like Stromboli (Italy), because it can detect very shallow magma storage, which is difficult to identify using other methods. This technique allows the user to choose the optimal radar location for measuring the most significant deformation signal, provides an exceptional geometrical resolution, and allows for continuous monitoring of the deformation. Here, we present and model ground displacements collected at Stromboli by GBInSAR from January 2010 to August 2014. During this period, the volcano experienced several episodes of intense volcanic activity, culminated in the effusive flank eruption of August 2014. Modelling of the deformation allowed us to estimate a source depth of 482 ± 46 m a.s.l. The cumulative volume change was 4.7 ± 2.6 × 105 m3. The strain energy of the source was evaluated 3–5 times higher than the surface energy needed to open the 6–7 August eruptive fissure. The analysis proposed here can help forecast shifts in the eruptive style and especially the onset of flank eruptions at Stromboli and at similar volcanic systems (e.g. Etna, Piton de La Fournaise, Kilauea).


IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing | 2015

Early Warning GBInSAR-Based Method for Monitoring Volterra (Tuscany, Italy) City Walls

Fabio Pratesi; Teresa Nolesini; Silvia Bianchini; Davide Leva; Luca Lombardi; Riccardo Fanti; Nicola Casagli

Ground-based synthetic aperture radar interferometry (GBInSAR) remote sensing technique has been repeatedly proved an effective tool for monitoring built environment affected by structural and geological criticalities. In this paper, it is described how this technique can be successfully applied for early-warning procedures and detection of ongoing deterioration processes on archeological and cultural heritage sites. An integrated approach of GBInSAR and terrestrial laser scanner (TLS) technologies was performed on Volterra test site (Tuscany, Italy), where a sudden collapse of a 35-m wide section of city walls occurred on January 31, 2014. The installed early-warning monitoring system is capable of an accurate and focused real-time displacement detection of the south-western side of the city including walls, buildings, and monuments, thus allowing prompt interventions for citizens safety and conservation purposes. The effectiveness of this alert technique became evident when the precursors of a second impressive wall collapse were clearly detected. From the beginning of the GBInSAR monitoring, we measured a constant displacement velocity of 0.1 mm/h in correspondence to a 15-m high wall sustaining the Acropolis and lying an underground parking. After a sudden increase of velocity values up to 1.7 mm/h, the local authorities were alerted so that they had time to interdict the area to citizens and to take adequate safety countermeasures two days before the collapse.


Quarterly Journal of Engineering Geology and Hydrogeology | 2014

A new appraisal of the Ancona landslide based on geotechnical investigations and stability modelling

Andrea Agostini; Veronica Tofani; Teresa Nolesini; Giovanni Gigli; Luca Tanteri; Ascanio Rosi; Stefano Cardellini; Nicola Casagli

On the night of 13 December 1982, Ancona experienced the catastrophic reactivation of an old and large landslide located along the coast to the west of the city. The outcomes of past and new geotechnical investigations and the data from the 30 year readings of the monitoring instruments have been integrated to redefine and update the actual location of the sliding surfaces. According to the new analysis, the landslide involves four main sliding surfaces with different extents and depths. The deepest surfaces converge at depth in a shear band and their toes are positioned near or beyond the coast. Numerical and analytical modelling of the landslide has been carried out using the newly derived sliding surface geometries. The numerical modelling has allowed a qualitative assessment of the deformation pattern, confirming the geometry of the sliding surfaces derived from the geotechnical investigations. The stability analyses have been performed applying the limit equilibrium method to quantify the instability conditions of the landside. The analyses have been carried out for five stratigraphic–geotechnical scenarios. All of these scenarios show a stability condition near the limit equilibrium.


Remote Sensing | 2016

Detecting Slope and Urban Potential Unstable Areas by Means of Multi-Platform Remote Sensing Techniques: The Volterra (Italy) Case Study

Teresa Nolesini; William Frodella; Silvia Bianchini; Nicola Casagli

Volterra (Central Italy) is a town of great historical interest, due to its vast and well-preserved cultural heritage, including a 2.6 km long Etruscan-medieval wall enclosure representing one of the most important elements. Volterra is located on a clayey hilltop prone to landsliding, soil erosion, therefore the town is subject to structural deterioration. During 2014, two impressive collapses occurred on the wall enclosure in the southwestern urban sector. Following these events, a monitoring campaign was carried out by means of remote sensing techniques, such as space-borne (PS-InSAR) and ground-based (GB-InSAR) radar interferometry, in order to analyze the displacements occurring both in the urban area and the surrounding slopes, and therefore to detect possible critical sectors with respect to instability phenomena. Infrared thermography (IRT) was also applied with the aim of detecting possible criticalities on the wall-enclosure, with special regards to moisture and seepage areas. PS-InSAR data allowed a stability back-monitoring on the area, revealing 19 active clusters displaying ground velocity higher than 10 mm/year in the period 2011–2015. The GB-InSAR system detected an acceleration up to 1.7 mm/h in near-real time as the March 2014 failure precursor. The IRT technique, employed on a double survey campaign, in both dry and rainy conditions, permitted to acquire 65 thermograms covering 23 sectors of the town wall, highlighting four thermal anomalies. The outcomes of this work demonstrate the usefulness of different remote sensing technologies for deriving information in risk prevention and management, and the importance of choosing the appropriate technology depending on the target, time sampling and investigation scale. In this paper, the use of a multi-platform remote sensing system permitted technical support of the local authorities and conservators, providing a comprehensive overview of the Volterra site, its cultural heritage and landscape, both in near-real time and back-analysis and at different scales of investigation.


Landslides | 2017

The Calatabiano landslide (southern Italy): preliminary GB-InSAR monitoring data and remote 3D mapping

Luca Lombardi; Massimiliano Nocentini; William Frodella; Teresa Nolesini; Federica Bardi; Emanuele Intrieri; Tommaso Carlà; Lorenzo Solari; Giulia Dotta; Federica Ferrigno; Nicola Casagli

On 24 October 2015, following a period of heavy rainfall, a landslide occurred in the Calatabiano Municipality (Sicily Island, Southern Italy), causing the rupture of a water pipeline supplying water to the city of Messina. Following this event, approximately 250,000 inhabitants of the city suffered critical water shortages for several days. Consequently, on 6 November 2015, a state of emergency was declared (O.C.D.P. 295/2015) by the National Italian Department of Civil Protection (DPC). During the emergency management phase, a provisional by-pass, consisting of three 350-m long pipes passing through the landslide area, was constructed to restore water to the city. Furthermore, on 11 November 2015, a landslide remote-sensing monitoring system was installed with the following purposes: (i) analyse the landslide geomorphological and kinematic features in order to assess the residual landslide risk and (ii) support the early warning procedures needed to ensure the safety of the personnel involved in the by-pass construction and the landslide stabilization works. The monitoring system was based on the combined use of Ground-Based Interferometric Synthetic Aperture Radar (GB-InSAR) and terrestrial laser scanning (TLS). In this work, the preliminary results of the monitoring activities and a remote 3D map of the landslide area are presented.


Landslides | 2018

Susceptibility of intrusion-related landslides at volcanic islands: the Stromboli case study

Federico Di Traglia; Stefania Bartolini; Erica Artesi; Teresa Nolesini; Andrea Ciampalini; Daniela Lagomarsino; Joan Martí; Nicola Casagli

Susceptibility of intrusion-related landslides in an active volcano was evaluated coupling the landslide susceptibility estimation by random forest (RF), and the probabilistic volcanic vent opening distribution, as proxy for magma injection, using the QVAST tool. In order to develop and test the method proposed here, the RF/QVAST approach was adopted for Stromboli volcano (Southern Italy) since it experienced moderate to huge instability events, it is geomorphologically prone to instability events, and it is affected by active intense volcanic activity that can produce slope instability. The main destabilizing factors of the volcanic flanks are the slope, the aspect, the terrain roughness, the land cover and the litho-technical features of the outcropping rocks. Estimation of volcanic susceptibility shows that the areas with high probability of new vent opening are located in the north-western unstable volcano flank (Sciara del Fuoco), in the volcano summit and the north-eastern volcano flank coherent with the possible re-activation of the eruptive fissures related to the regional tectonic setting. The areas with higher probability of intrusion-related landslides are located in the upper part of the Sciara del Fuoco, while the rest of the island show moderate to low probability of intrusion-related landslide occurrence.

Collaboration


Dive into the Teresa Nolesini's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge