Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Teresa Sanelli is active.

Publication


Featured researches published by Teresa Sanelli.


Molecular and Cellular Neuroscience | 2011

RNA targets of TDP-43 identified by UV-CLIP are deregulated in ALS

Shangxi Xiao; Teresa Sanelli; Samar Dib; David Sheps; Joseph Findlater; Juan M. Bilbao; Julia Keith; Lorne Zinman; Ekaterina Rogaeva; Janice Robertson

TDP-43 is a predominantly nuclear DNA/RNA binding protein involved in transcriptional regulation and RNA processing. TDP-43 is also a component of the cytoplasmic inclusion bodies characteristic of amyotrophic lateral sclerosis (ALS) and of frontotemporal lobar degeneration with ubiquitinated inclusions (FTLD-U). We have investigated the premise that abnormalities of TDP-43 in disease would be reflected by changes in processing of its target RNAs. To this end, we have firstly identified RNA targets of TDP-43 using UV-Cross-Linking and Immunoprecipitation (UV-CLIP) of SHSY5Y cells, a human neuroblastoma cell line. We used conventional cloning strategies to identify, after quality control steps, 127 targets. Results show that TDP-43 binds mainly to introns at UG/TG repeat motifs (49%) and polypyrimidine rich sequences (17.65%). To determine if the identified RNA targets of TDP-43 were abnormally processed in ALS versus control lumbar spinal cord RNA, we performed RT-PCR using primers designed according to the location of TDP-43 binding within the gene, and prior evidence of alternative splicing of exons adjacent to this site. Of eight genes meeting these criteria, five were differentially spliced in ALS versus control. This supports the premise that abnormalities of TDP-43 in ALS are reflected in changes of RNA processing.


Neuroscience Letters | 2007

Lack of TDP-43 abnormalities in mutant SOD1 transgenic mice shows disparity with ALS.

Janice Robertson; Teresa Sanelli; Shangxi Xiao; Wencheng Yang; Patrick Horne; Robert Hammond; Erik P. Pioro; Michael J. Strong

Mislocalization of the TAR-DNA binding protein (TDP-43) from the nucleus to the cytoplasm of diseased motor neurons and association with intraneuronal ubiquitinated inclusions has recently been reported in amyotrophic lateral sclerosis (ALS). Here, we have investigated TDP-43 immunoreactivity in three lines of mutant SOD1 transgenic mice, G93A, G37R and G85R and compared with labeling in one sporadic ALS case and two familial ALS cases carrying mutations in SOD1, A4T and I113T. Our findings show that there is no mislocalization of TDP-43 to the cytoplasm in motor neurons of mutant SOD1 transgenic mice, nor association of TDP-43 with ubiquitinated inclusions. In contrast, mislocalization of TDP-43 to the cytoplasm and association with ubiquitinated inclusions was found in the ALS cases, including those carrying mutations in SOD1. Interestingly, there was no association of TDP-43 with ubiquitinated hyaline conglomerate inclusions, pathology closely associated with ALS cases carrying mutations in SOD1. Our findings indicate that the process of motor neuron degeneration in mutant SOD1 transgenic mice is unlikely to involve the abnormalities of TDP-43 described in the human disease.


Annals of Neurology | 2009

Lack of evidence of monomer/misfolded superoxide dismutase-1 in sporadic amyotrophic lateral sclerosis

Hsueh Ning Liu; Teresa Sanelli; Patrick Horne; Erik P. Pioro; Michael J. Strong; Ekaterina Rogaeva; Juan M. Bilbao; Lorne Zinman; Janice Robertson

In familial amyotrophic lateral sclerosis (fALS) harboring superoxide dismutase (SOD1) mutations (fALS1), SOD1 toxicity has been linked to its propensity to misfold and aggregate. It has recently been proposed that misfolded SOD1 may be causative of all types of ALS, including sporadic cases (sALS). In the present study, we have used a specific antibody to test for the presence of monomer/misfolded SOD1 in sALS.


The Journal of Neuroscience | 2008

An aggregate-inducing peripherin isoform generated through intron retention is upregulated in amyotrophic lateral sclerosis and associated with disease pathology.

Shangxi Xiao; Sonja Tjostheim; Teresa Sanelli; Jesse R. McLean; Patrick Horne; Yuxin Fan; John Ravits; Michael J. Strong; Janice Robertson

The neuronal intermediate filament protein peripherin is a component of ubiquitinated inclusions and of axonal spheroids in amyotrophic lateral sclerosis (ALS). Overexpression of peripherin causes motor neuron degeneration in transgenic mice and variations within the peripherin gene have been identified in ALS cases. We have shown previously the abnormal expression of a neurotoxic peripherin splice variant in transgenic mice expressing mutant superoxide dismutase-1. These findings indicated that abnormalities of peripherin splicing may occur in ALS. In the current study, peripherin splice variants were identified by reverse transcription-PCR of human neuronal RNA and comparisons in expression made between control and ALS spinal cord using Western blot analysis and immunocytochemistry. Using this approach we have identified a novel peripherin transcript retaining introns 3 and 4 that results in a 28 kDa splice isoform, designated Per 28. Using an antibody specific to Per 28, we show that this isoform is expressed at low stoichiometric levels from the peripherin gene, however causes peripherin aggregation when its expression is upregulated. Importantly we show an upregulation of Per 28 expression in ALS compared with controls, at both the mRNA and protein levels, and that Per 28 is associated with disease pathology, specifically round inclusions. These findings are the first to establish that peripherin splicing abnormalities occur in ALS, generating aggregation-prone splice isoforms.


Journal of Neuropathology and Experimental Neurology | 2007

Evidence that TDP-43 is not the major ubiquitinated target within the pathological inclusions of amyotrophic lateral sclerosis.

Teresa Sanelli; Shangxi Xiao; Patrick Horne; Juan M. Bilbao; Lorne Zinman; Janice Robertson

Amyotrophic lateral sclerosis (ALS) is an adult-onset neurodegenerative disease characterized by the presence of various types of ubiquitinated inclusions in the cytoplasm of affected motor neurons. The identification of the ubiquitinated targets within these inclusions has represented a major challenge, as this may provide new gene candidates and/or clues to understanding the neurodegenerative mechanism(s) underlying the disease. As such, the nuclear factor TAR DNA-binding protein (TDP-43) was recently identified as a component of ubiquitinated skein-like inclusions and round inclusions in ALS. This identification combined with biochemical evidence led to the suggestion that TDP-43 is the key ubiquitinated target and major disease protein in ALS. Here, using 3-dimensional deconvolution imaging, we have obtained remarkable resolution of skein-like inclusions and round inclusions in ALS. Surprisingly we have found that in contrast to current thinking, TDP-43 is not the major ubiquitinated target within these types of inclusions. These findings raise the possibility that TDP-43 may not necessarily be the key disease protein in ALS and indicate that the major target(s) of ubiquitination remain to be identified.


Journal of the Neurological Sciences | 2007

Calcium mediated excitotoxicity in neurofilament aggregate-bearing neurons in vitro is NMDA receptor dependant

Teresa Sanelli; Wei-Wen Ge; Cheryl Leystra-Lantz; Michael J. Strong

We have previously shown that the co-localization of neuronal nitric oxide synthase (nNOS) with neurofilament (NF) aggregates in motor neurons derived from transgenic mice over-expressing the human low molecular weight NF protein (hNFL+/+) is associated with a deregulation of calcium influx via the N-methyl-d-aspartate (NMDA) receptor, resulting in apoptosis. Because the absence of the GluR2 subunit of the alpha-amino-3-hydroxy-5-methyl-4-isoazolepropionic acid (AMPA) receptor confers calcium permeability and has been implicated in the process of excitotoxicity in ALS, we have examined the role of the AMPA receptor in this model. GluR2 protein expression and mRNA were examined in hNFL+/+ and wild-type motor neurons (wt). Live cell calcium imaging was performed using Oregon-Green Bapta and Fura-2 calcium dyes. For apoptotic studies, neurons were treated with glutamate, with or without glutamate receptor antagonists [6-cyano-7-nitroquinoxaline-2, 3-dione (CNQX) or (+)-5-methyl-10, 11-dihydro-5H-dibenzo[a,d]cyclohepten-5,10-imine maleate (MK-801)] and examined for active caspase-3 or phospholipid inversion. We observed that although both GluR2 mRNA and protein levels were decreased in hNFL+/+ motor neurons compared to wt, there was no appreciable calcium influx via the AMPA receptor. These studies demonstrate that calcium mediated excitotoxicity in NF aggregate-bearing neurons is NMDA receptor dependant.


Neuropharmacology | 2000

Nicotine-induced fos expression in the pedunculopontine mesencephalic tegmentum in the rat.

A.José Lança; Teresa Sanelli; William A. Corrigall

The aim of this study was to assess the effects of a single dose of nicotine (NIC, 0.3 or 1.0 mg/kg, s.c.), after survival times of 30, 60 or 120 min, on immediate early gene expression in the pedunculopontine mesencephalic tegmentum (PMT), using Fos-immunocytochemistry. Either doses of NIC strongly increased Fos-immunoreactivity in both the pedunculopontine tegmental nucleus (PPTg) and the laterodorsal tegmental nucleus (LDTg), as compared to the saline controls, at 30 min and 60 min. In comparison, the effects of NIC-induced Fos expression in the caudate-putamen (CP) were not as strong as the ones observed in the PPTg and LDTg. In fact, at 30 min the 0.3 mg/kg dose of NIC did not induce Fos-expression, unlike the PPTg and LDTg. The CP response was more noticeable in the mediodorsal than in the laterodorsal region. Double-labelling studies using Fos-immunoreactivity and NADPH-diaphorase histochemistry for cholinergic cells in the PPTg and LDTg revealed that, in general, cholinergic neurons had Fos negative nuclei, although double-labelled neurons were occasionally seen in the PPTg. In conclusion, systemically administered NIC activates the neuronal population of the PPTg and the LDTg possibly by directly targeting nicotinic receptors that may be located in non-cholinergic neurons. We postulate that activation of these non-cholinergic neurons modulates the activity of cholinergic cells in the PMT, which in turn may alter dopamine release in the mesolimbic system.


Acta Neuropathologica | 2015

Low molecular weight species of TDP‑43 generated by abnormal splicing form inclusions in amyotrophic lateral sclerosis and result in motor neuron death

Shangxi Xiao; Teresa Sanelli; Helen Chiang; Yulong Sun; Avijit Chakrabartty; Julia Keith; Ekaterina Rogaeva; Lorne Zinman; Janice Robertson

The presence of lower molecular weight species comprising the C-terminal region of TAR DNA-binding protein 43 (TDP-43) is a characteristic of TDP-43 proteinopathy in amyotrophic lateral sclerosis (ALS) and frontotemporal lobar degeneration (FTLD). Here, we have identified a novel splice variant of TDP-43 that is upregulated in ALS and generates a 35-kDa N-terminally truncated species through use of an alternate translation initiation codon (ATGMet85), denoted here as Met85-TDP-35. Met85-TDP-35 expressed ectopically in human neuroblastoma cells exhibited reduced solubility, cytoplasmic distribution, and aggregation. Furthermore, Met85-TDP-35 sequestered full-length TDP-43 from the nucleus to form cytoplasmic aggregates. Expression of Met85-TDP-35 in primary motor neurons resulted in the formation of Met85-TDP-35-positive cytoplasmic aggregates and motor neuron death. A neo-epitope antibody specific for Met85-TDP-35 labeled the 35-kDa lower molecular weight species on immunoblots of urea-soluble extracts from ALS-FTLD disease-affected tissues and co-labeled TDP-43-positive inclusions in ALS spinal cord sections, confirming the physiological relevance of this species. These results show that the 35-kDa low molecular weight species in ALS-FTLD can be generated from an abnormal splicing event and use of a downstream initiation codon and may represent a mechanism by which TDP-43 elicits its pathogenicity.


Neuroscience Research | 2006

Activated microglial supernatant induced motor neuron cytotoxicity is associated with upregulation of the TNFR1 receptor

Weiyan Wen; Teresa Sanelli; Wei-Wen Ge; Wendy Strong; Michael J. Strong

We have previously reported that supernatant derived from LPS-activated BV-2 cells, an immortalized microglial cell line, induces death of NSC-34 cells (a motor neuron hybridoma) through a TNFalpha and nitric oxide synthase (NOS) dependant mechanism. In this study, we have observed that LPS-activated BV-2 supernatant induces NSC-34 cell death in association with an upregulation of the TNF receptor 1 (TNFR1) expression on NSC-34 cells, both at the transcription level and at the cell surface protein level. The upregulation of TNFR1 receptor was independent of TNFalpha, and could be partly inhibited by the inhibition of iNOS activation in the BV-2 cells. The TNFR2 receptor was not involved. These observations have important implications in understanding the mechanism by which microglial activation contributes to the motor neuron degeneration.


Glia | 2005

Temporal profiles of neuronal degeneration, glial proliferation, and cell death in hNFL(+/+) and NFL(−/−)mice

Jesse R. McLean; Teresa Sanelli; Cheryl Leystra-Lantz; Bei Ping He; Michael J. Strong

Neurofilament (NF) aggregate formation within motor neurons is a pathological hallmark of both the sporadic and familial forms of amyotrophic lateral sclerosis (ALS). The relationship between aggregate formation and both microglial and astrocytic proliferation, as well as additional neuropathological features of ALS, is unknown. To examine this, we have used transgenic mice that develop NF aggregates, through either a lack of the low‐molecular‐weight NF subunit [NFL (−/−)] or the overexpression of human NFL [hNFL (+/+)]. Transgenic and wild‐type C57bl/6 mice were examined from 1 month to 18 months of age, and the temporal pattern of motor neuron degeneration, microglial and astrocytic proliferation, and heat shock protein‐70 (HSP‐70) expression characterized. We observed three overlapping phases in both transgenic mice, including transient aggregate formation, reactive microgliosis, and progressive motor neuron loss. However, only NFL (−/−) mice demonstrated significant astrogliosis and HSP‐70 upregulation in both motor neurons and astrocytes. These in vivo models suggest that the development of NF aggregates in motor neurons leads to motor neuron death, but that the interaction between the degenerating motor neurons and the adjacent non‐neuronal cells may differ significantly depending on the etiology of the NF aggregate itself.

Collaboration


Dive into the Teresa Sanelli's collaboration.

Top Co-Authors

Avatar

Michael J. Strong

University of Western Ontario

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Lorne Zinman

Sunnybrook Health Sciences Centre

View shared research outputs
Top Co-Authors

Avatar

Ekaterina Rogaeva

Sunnybrook Health Sciences Centre

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Wei-Wen Ge

Robarts Research Institute

View shared research outputs
Researchain Logo
Decentralizing Knowledge