Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Teresa Wasielewska is active.

Publication


Featured researches published by Teresa Wasielewska.


Science | 2009

Development of a Second-Generation Antiandrogen for Treatment of Advanced Prostate Cancer

Chris Tran; Samedy Ouk; Nicola J. Clegg; Yu Chen; Philip A. Watson; Vivek K. Arora; John Wongvipat; Peter Smith-Jones; Dongwon Yoo; Andrew Kwon; Teresa Wasielewska; Derek S. Welsbie; Charlie D. Chen; Celestia S. Higano; Tomasz M. Beer; David T. Hung; Howard I. Scher; Michael E. Jung; Charles L. Sawyers

A Second Act for Antiandrogens Men with advanced prostate cancer are often treated with antiandrogens; drugs that inhibit the activity of male hormones, such as testosterone, that help drive tumor growth. Many of these drugs act by functionally disrupting the androgen receptor (AR), a transcriptional regulator of cell proliferation, but tumors eventually become resistant to the drugs by expressing higher levels of the AR. Tran et al. (p. 787, published online 9 April) have developed a “second-generation” antiandrogen, a thiohydantoin called MDV3100, which binds the AR with high affinity. MDV3100 retains its anticancer activity in cell culture and in mouse models even when AR levels are elevated. The drug appears to act both by inhibiting translocation of the AR into the nucleus and by reducing its transcriptional activity. MDV3100 is being tested in patients with advanced prostate cancer, the first group of which have shown a decline in blood levels of a marker of cancer growth, prostate-specific antigen. A drug that binds to the androgen receptor acts by disrupting its activity in the cell nucleus. Metastatic prostate cancer is treated with drugs that antagonize androgen action, but most patients progress to a more aggressive form of the disease called castration-resistant prostate cancer, driven by elevated expression of the androgen receptor. Here we characterize the diarylthiohydantoins RD162 and MDV3100, two compounds optimized from a screen for nonsteroidal antiandrogens that retain activity in the setting of increased androgen receptor expression. Both compounds bind to the androgen receptor with greater relative affinity than the clinically used antiandrogen bicalutamide, reduce the efficiency of its nuclear translocation, and impair both DNA binding to androgen response elements and recruitment of coactivators. RD162 and MDV3100 are orally available and induce tumor regression in mouse models of castration-resistant human prostate cancer. Of the first 30 patients treated with MDV3100 in a Phase I/II clinical trial, 13 of 30 (43%) showed sustained declines (by >50%) in serum concentrations of prostate-specific antigen, a biomarker of prostate cancer. These compounds thus appear to be promising candidates for treatment of advanced prostate cancer.


Science Translational Medicine | 2013

CD19-targeted T cells rapidly induce molecular remissions in adults with chemotherapy-refractory acute lymphoblastic leukemia.

Renier J. Brentjens; Marco L. Davila; Isabelle Riviere; Jae Park; Xiuyan Wang; Lindsay G. Cowell; Shirley Bartido; Jolanta Stefanski; Clare Taylor; Malgorzata Olszewska; Oriana Borquez-Ojeda; Jinrong Qu; Teresa Wasielewska; Qing He; Yvette Bernal; Ivelise Rijo; Cyrus V. Hedvat; Rachel Kobos; Kevin J. Curran; Peter G. Steinherz; Joseph G. Jurcic; Todd L. Rosenblat; P. Maslak; Mark G. Frattini; Michel Sadelain

Five adults with chemotherapy-refractory B-ALL were induced into molecular remissions after treatment with CD19 CAR-targeted T cells. CARving a Niche for Cancer Immunotherapy Acute lymphoblastic leukemia (ALL) is a cancer of the white blood cells that fend off infection. It’s most common in children but—as with many diseases that primarily affect children—has a much worse prognosis when it affects adults. Adults with relapsed disease have a very low chance of survival, and new therapies are desperately needed. Now, Brentjens et al. test T cells engineered to target CD19, which is expressed on both healthy B lymphocytes and B-ALL cells, in five chemotherapy-refractory adult B-ALL patients. Here, the authors treat patients with the patients’ own T cells altered to express not only CD19 but also a fusion of the costimulatory molecule CD28 with CD3ζ chain—so-called “second-generation chimeric antigen receptor (CAR) T cells.” All patients treated with these cells achieved tumor eradication and complete remission. These CAR T cells were well tolerated, although there was substantial cytokine release in some patients that correlated to tumor burden. These patients were treated with steroid therapy. Long-term follow-up in four of these patients was not possible because the CAR T cell therapy allowed these patients to be eligible for subsequent hematopoietic stem cell transplant (HSCT), which resulted in restored hematopoiesis. The remaining patient experienced a relapse of CD19+ cells that coincided with the lack of persistence of the CAR T cells from circulation. These data suggest that subsequent transfusions should be considered for patients unable to undergo HSCT. Adults with relapsed B cell acute lymphoblastic leukemia (B-ALL) have a dismal prognosis. Only those patients able to achieve a second remission with no minimal residual disease (MRD) have a hope for long-term survival in the context of a subsequent allogeneic hematopoietic stem cell transplantation (allo-HSCT). We have treated five relapsed B-ALL subjects with autologous T cells expressing a CD19-specific CD28/CD3ζ second-generation dual-signaling chimeric antigen receptor (CAR) termed 19-28z. All patients with persistent morphological disease or MRD+ disease upon T cell infusion demonstrated rapid tumor eradication and achieved MRD− complete remissions as assessed by deep sequencing polymerase chain reaction. Therapy was well tolerated, although significant cytokine elevations, specifically observed in those patients with morphologic evidence of disease at the time of treatment, required lymphotoxic steroid therapy to ameliorate cytokine-mediated toxicities. Indeed, cytokine elevations directly correlated to tumor burden at the time of CAR-modified T cell infusions. Tumor cells from one patient with relapsed disease after CAR-modified T cell therapy, who was ineligible for additional allo-HSCT or T cell therapy, exhibited persistent expression of CD19 and sensitivity to autologous 19-28z T cell–mediated cytotoxicity, which suggests potential clinical benefit of additional CAR-modified T cell infusions. These results demonstrate the marked antitumor efficacy of 19-28z CAR-modified T cells in patients with relapsed/refractory B-ALL and the reliability of this therapy to induce profound molecular remissions, forming a highly effective bridge to potentially curative therapy with subsequent allo-HSCT.


Science Translational Medicine | 2014

Efficacy and toxicity management of 19-28z CAR T cell therapy in B cell acute lymphoblastic leukemia.

Marco L. Davila; Isabelle Riviere; Xiuyan Wang; Shirley Bartido; Jae Park; Kevin J. Curran; Stephen S. Chung; Jolanta Stefanski; Oriana Borquez-Ojeda; Malgorzata Olszewska; Jinrong Qu; Teresa Wasielewska; Qing He; Mitsu Fink; Himaly Shinglot; Maher Youssif; Mark Satter; Yongzeng Wang; James Hosey; Hilda Quintanilla; Elizabeth Halton; Yvette Bernal; Diana C. G. Bouhassira; Maria E. Arcila; Mithat Gonen; Gail J. Roboz; P. Maslak; Dan Douer; Mark G. Frattini; Sergio Giralt

CD19 CAR T cell therapy induces complete remissions in 88% of 16 adult patients with relapsed or refractory acute lymphoblastic leukemia. CARving Out a Niche for CAR T Cell Immunotherapy Relapsed or refractory B acute lymphoblastic leukemia (B-ALL) in adults has a poor prognosis, with an expected median survival of less than 6 months. An emerging therapy for adult B-ALL is through T cells that target tumor cells with chimeric antigen receptors (CARs). Davila et al. now report the results of a phase 1 clinical trial of CAR T cells in 16 relapsed or refractory adult patients. The CD19-targeting CAR T cell therapy resulted in an 88% complete response rate, which allowed most of the patients to transition to allogeneic hematopoietic stem cell transplantation—the current standard of care. Moreover, the authors carefully characterized cytokine release syndrome (CRS), which is a series of toxicities associated with CAR T cell therapy. They found that serum C-reactive protein (CRP) associated with the severity of CRS, which should allow for identification of the subset of patients who will likely require therapeutic intervention with corticosteroids or interleukin-6 receptor blockade to curb the CRS. This is especially important because treatment for CRS may limit the efficacy of the CAR T cell therapy. These data support the need for further multicenter trials for CAR T cell therapy. We report on 16 patients with relapsed or refractory B cell acute lymphoblastic leukemia (B-ALL) that we treated with autologous T cells expressing the 19-28z chimeric antigen receptor (CAR) specific to the CD19 antigen. The overall complete response rate was 88%, which allowed us to transition most of these patients to a standard-of-care allogeneic hematopoietic stem cell transplant (allo-SCT). This therapy was as effective in high-risk patients with Philadelphia chromosome–positive (Ph+) disease as in those with relapsed disease after previous allo-SCT. Through systematic analysis of clinical data and serum cytokine levels over the first 21 days after T cell infusion, we have defined diagnostic criteria for a severe cytokine release syndrome (sCRS), with the goal of better identifying the subset of patients who will likely require therapeutic intervention with corticosteroids or interleukin-6 receptor blockade to curb the sCRS. Additionally, we found that serum C-reactive protein, a readily available laboratory study, can serve as a reliable indicator for the severity of the CRS. Together, our data provide strong support for conducting a multicenter phase 2 study to further evaluate 19-28z CAR T cells in B-ALL and a road map for patient management at centers now contemplating the use of CAR T cell therapy.


Cancer Research | 2012

ARN-509: A Novel Antiandrogen for Prostate Cancer Treatment

Nicola J. Clegg; John Wongvipat; James Joseph; Chris Tran; Samedy Ouk; Anna Dilhas; Yu Chen; Kate Grillot; Eric D. Bischoff; Ling Cai; Anna Aparicio; Steven Dorow; Vivek K. Arora; Gang Shao; Jing Qian; Hong Zhao; Guangbin Yang; Chunyan Cao; John Sensintaffar; Teresa Wasielewska; Mark R. Herbert; Celine Bonnefous; Beatrice Darimont; Howard I. Scher; Peter Smith-Jones; Mark Klang; Nicholas D. Smith; Elisa de Stanchina; Nian Wu; Ouathek Ouerfelli

Continued reliance on the androgen receptor (AR) is now understood as a core mechanism in castration-resistant prostate cancer (CRPC), the most advanced form of this disease. While established and novel AR pathway-targeting agents display clinical efficacy in metastatic CRPC, dose-limiting side effects remain problematic for all current agents. In this study, we report the discovery and development of ARN-509, a competitive AR inhibitor that is fully antagonistic to AR overexpression, a common and important feature of CRPC. ARN-509 was optimized for inhibition of AR transcriptional activity and prostate cancer cell proliferation, pharmacokinetics, and in vivo efficacy. In contrast to bicalutamide, ARN-509 lacked significant agonist activity in preclinical models of CRPC. Moreover, ARN-509 lacked inducing activity for AR nuclear localization or DNA binding. In a clinically valid murine xenograft model of human CRPC, ARN-509 showed greater efficacy than MDV3100. Maximal therapeutic response in this model was achieved at 30 mg/kg/d of ARN-509, whereas the same response required 100 mg/kg/d of MDV3100 and higher steady-state plasma concentrations. Thus, ARN-509 exhibits characteristics predicting a higher therapeutic index with a greater potential to reach maximally efficacious doses in man than current AR antagonists. Our findings offer preclinical proof of principle for ARN-509 as a promising therapeutic in both castration-sensitive and castration-resistant forms of prostate cancer.


Journal of Immunotherapy | 2015

Large-Scale Clinical-Grade Retroviral Vector Production in a Fixed-Bed Bioreactor

Xiuyan Wang; Malgorzata Olszewska; Jinrong Qu; Teresa Wasielewska; Shirley Bartido; Gregory Hermetet; Michel Sadelain; Isabelle Riviere

The successful genetic engineering of patient T cells with &ggr;-retroviral vectors expressing chimeric antigen receptors or T-cell receptors for phase II clinical trials and beyond requires the large-scale manufacture of high-titer vector stocks. The production of retroviral vectors from stable packaging cell lines using roller bottles or 10- to 40-layer cell factories is limited by a narrow harvest window, labor intensity, open-system operations, and the requirement for significant incubator space. To circumvent these shortcomings, we optimized the production of vector stocks in a disposable fixed-bed bioreactor using good manufacturing practice–grade packaging cell lines. High-titer vector stocks were harvested over 10 days, representing a much broader harvest window than the 3-day harvest afforded by cell factories. For PG13 and 293Vec packaging cells, the average vector titer and the vector stocks’ yield in the bioreactor were higher by 3.2- to 7.3-fold, and 5.6- to 13.1-fold, respectively, than those obtained in cell factories. The vector production was 10.4 and 18.6 times more efficient than in cell factories for PG13 and 293Vec cells, respectively. Furthermore, the vectors produced from the fixed-bed bioreactors passed the release test assays for clinical applications. Therefore, a single vector lot derived from 293Vec is suitable to transduce up to 500 patients cell doses in the context of large clinical trials using chimeric antigen receptors or T-cell receptors. These findings demonstrate for the first time that a robust fixed-bed bioreactor process can be used to produce &ggr;-retroviral vector stocks scalable up to the commercialization phase.


Molecular Therapy | 2016

459. Evaluation of Miltenyi ExpAct and TransAct CD3/28 Beads for CAR-T Cell Manufacturing

Xiuyan Wang; Jinrong Qu; Jolanta Stefanski; Oriana Borquez-Ojeda; Anniesha Hack; Qing He; Teresa Wasielewska; Fang Du; Michel Sadelain; Isabelle Riviere

Adoptive transfer of chimeric antigen receptor (CAR) engineered T cells is a promising emerging strategy to treat cancer patients. Large-scale manufacturing of cGMP-grade CAR T cells using patient T cells selected and activated by CTS™ Dynabeads® CD3/CD28 (Dynabeads) followed by transduction with retroviral vectors is being used in the context of many clinical trials by our laboratory and others. Although we have established a robust protocol using Dynabeads, it is important to explore alternative sources to pre-empt supply chain limitations of this critical reagent. To this end, we evaluated T cell activation with either Miltenyi TransAct CD3/28 (TransAct) beads or Miltenyi ExpAct Treg (ExpAct) beads. In small-scale experiments, PBMCs were directly activated with TransAct or ExpAct beads and compared with our standard T cell selection and activation using Dynabeads. Overall, the transduction efficiency and expansion of T cells were comparable upon activation with all three reagents. The TransAct bead-stimulated cells exhibited comparable effector memory (EM)/central memory (CM) phenotype to that of the Dynabeads stimulated cells. In line with the EM/CM phenotype, CAR T cells stimulated with either TransAct or Dynabeads and tranduced with CD19-targeted CAR demonstrated robust and comparable antitumor activity in a systemic NSG/CD19+ NALM6 tumor mouse model. We further tested the efficacy of TransAct beads using positively or negatively selected T cells in a large-scale cGMP grade CAR-T cell manufacturing setting. Both the transduction efficiency and expansion of selected CD3+ cells activated with TransAct beads and Dynabeads were comparable. CD19-targeted CAR T cells activated by either TransAct or Dynabead were subjected to an in vivo stress test by using decreasing amount of CAR-T cells to treat systemic CD19+NALM6 tumors in NSG mice. In this experimental setting, T cells stimulated with TransAct beads demonstrated equivalent if not better anti-tumor activity than T cells stimulated with Dynabeads. In conclusion, our pre-clinical results suggest that TransAct beads support efficient transduction and expansion of CAR T cells. TransAct activated T cells exhibit antitumor activity equivalent to Dynabeads activated T cells in our NSG/CD19+NAML6 stress test. Therefore, Miltenyi TransAct beads can be used as an alternative to Dynabeads to stimulate T cells in clinical trials aiming at evaluating CAR T cell safety and antitumor activity.


Blood | 2013

Phase I Trial Of Autologous CD19-Targeted CAR-Modified T Cells As Consolidation After Purine Analog-Based First-Line Therapy In Patients With Previously Untreated CLL

Isabelle Riviere; Xiuyan Wang; Jolanta Stefanski; Qing He; Oriana Borquez-Ojeda; Teresa Wasielewska; Clare Taylor; Jinrong Qu; Shirley Bartido; Yvette Bernal; Michel Sadelain; Renier J. Brentjens


Blood | 2013

Safe and Effective Re-Induction Of Complete Remissions In Adults With Relapsed B-ALL Using 19-28z CAR CD19-Targeted T Cell Therapy

Isabelle Riviere; Xiuyan Wang; Shirley Bartido; Jolanta Stefanski; Qing He; Oriana Borquez-Ojeda; Clare Taylor; Teresa Wasielewska; Jinrong Qu; Diana C. G. Bouhassira; Yvette Bernal; Sarah Yoo; Terence Purdon; Elizabeth Halton; Hilda Quintanilla; Jae H. Park; Kevin J. Curran; Michel Sadelain; Renier J. Brentjens


Blood | 2012

Impact of the Conditioning Chemotherapy On Outcomes in Adoptive T Cell Therapy: Results From a Phase I Clinical Trial of Autologous CD19-Targeted T Cells for Patients with Relapsed CLL

Jae H. Park; Isabelle Riviere; Xiuyan Wang; Jolanta Stefanski; Qing He; Clare Taylor; Malgorzata Olszewska; Teresa Wasielewska; Shirley Bartido; Marco L. Davila; Yvette Bernal; Nicole Lamanna; Ariela Noy; Michel Sadelain; Renier J. Brentjens


Journal of Clinical Oncology | 2017

A phase I clinical trial of autologous, anti-CD19 gene targeted T cells for adults with B cell acute lymphoblastic leukemia (B-ALL).

Marco L. Davila; Isabelle Riviere; Xiuyan Wang; Shirley Bartido; Jolanta Stefanski; Clare Taylor; Malgorzata Olszewska; Oriana Borquez-Ojeda; Jinrong Qu; Teresa Wasielewska; Mark G. Frattini; Michel Sadelain; Renier J. Brentjens

Collaboration


Dive into the Teresa Wasielewska's collaboration.

Top Co-Authors

Avatar

Isabelle Riviere

Memorial Sloan Kettering Cancer Center

View shared research outputs
Top Co-Authors

Avatar

Xiuyan Wang

Memorial Sloan Kettering Cancer Center

View shared research outputs
Top Co-Authors

Avatar

Jinrong Qu

Memorial Sloan Kettering Cancer Center

View shared research outputs
Top Co-Authors

Avatar

Jolanta Stefanski

Memorial Sloan Kettering Cancer Center

View shared research outputs
Top Co-Authors

Avatar

Michel Sadelain

Memorial Sloan Kettering Cancer Center

View shared research outputs
Top Co-Authors

Avatar

Shirley Bartido

Memorial Sloan Kettering Cancer Center

View shared research outputs
Top Co-Authors

Avatar

Oriana Borquez-Ojeda

Memorial Sloan Kettering Cancer Center

View shared research outputs
Top Co-Authors

Avatar

Qing He

Memorial Sloan Kettering Cancer Center

View shared research outputs
Top Co-Authors

Avatar

Malgorzata Olszewska

Memorial Sloan Kettering Cancer Center

View shared research outputs
Top Co-Authors

Avatar

Renier J. Brentjens

Memorial Sloan Kettering Cancer Center

View shared research outputs
Researchain Logo
Decentralizing Knowledge