Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Teresia Hallström is active.

Publication


Featured researches published by Teresia Hallström.


The Journal of Infectious Diseases | 2010

Complement Regulator-Acquiring Surface Protein 1 of Borrelia burgdorferi Binds to Human Bone Morphogenic Protein 2, Several Extracellular Matrix Proteins, and Plasminogen

Teresia Hallström; Katrin Haupt; Peter Kraiczy; Peter Hortschansky; Reinhard Wallich; Christine Skerka; Peter F. Zipfel

Lyme disease-causing Borrelia burgdorferi spirochetes express up to 5 complement regulator-acquiring surface proteins (CRASPs). To better define how CRASP-1 contributes to infection, we aimed to identify novel CRASP-1-binding host proteins. Here, we identified a number of novel human CRASP-1-binding proteins, including bone morphogenic protein 2, collagen I, collagen III, collagen IV, fibronectin, laminin, and plasminogen. The plasminogen-binding regions were located in 2 separate regions of CRASP-1. Our results demonstrated that plasminogen-bound CRASP-1 can be converted to plasmin by the urokinase-type plasminogen activator and that proteolytically active plasmin cleaves the synthetic chromogenic substrate S-2251 and the natural substrate fibrinogen. In conclusion, CRASP-1 is a multifunctional protein of B. burgdorferi that binds to several human extracellular matrix proteins and plasminogen. These interactions may contribute to adhesion, bacterial colonization, and organ tropism and may allow dissemination of B. burgdorferi in the host.


Journal of Immunology | 2009

Nontypeable Haemophilus influenzae Protein E Binds Vitronectin and Is Important for Serum Resistance

Teresia Hallström; Anna M. Blom; Peter F. Zipfel; Kristian Riesbeck

Nontypeable Haemophilus influenzae (NTHi) commonly causes local disease in the upper and lower respiratory tract and has recently been shown to interfere with both the classical and alternative pathways of complement activation. The terminal pathway of the complement system is regulated by vitronectin that is a component of both plasma and the extracellular matrix. In this study, we identify protein E (PE; 16 kDa), which is a recently characterized ubiquitous outer membrane protein, as a vitronectin-binding protein of NTHi. A PE-deficient NTHi mutant had a markedly reduced survival in serum compared with the PE-expressing isogenic NTHi wild type. Moreover, the PE-deficient mutant showed a significantly decreased binding to both soluble and immobilized vitronectin. In parallel, PE-expressing Escherichia coli bound soluble vitronectin and adhered to immobilized vitronectin compared with controls. Surface plasmon resonance technology revealed a KD of 0.4 μΜ for the interaction between recombinant PE and immobilized vitronectin. Moreover, the PE-dependent vitronectin-binding site was located at the heparin-binding domains of vitronectin and the major vitronectin-binding domain was found in the central core of PE (aa 84–108). Importantly, vitronectin bound to the surface of NTHi 3655 reduced membrane attack complex-induced hemolysis. In contrast to incubation with normal human serum, NTHi 3655 showed a reduced survival in vitronectin-depleted human serum, thus demonstrating that vitronectin mediates a protective role at the bacterial surface. Our findings show that PE, by binding vitronectin, may play an important role in NTHi pathogenesis.


Journal of Biological Chemistry | 2013

The choline-binding protein PspC of Streptococcus pneumoniae interacts with the C-terminal heparin-binding domain of vitronectin.

Sylvia Voss; Teresia Hallström; Malek Saleh; Gerhard Burchhardt; Thomas Pribyl; Birendra Singh; Kristian Riesbeck; Peter F. Zipfel; Sven Hammerschmidt

Background: Adhesins are essential for pneumococcal colonization and pathogenesis. Results: PspC, identified as a vitronectin-binding protein, interacts with the C-terminal heparin-binding domain of vitronectin, and when bound to PspC, it retains complement inhibitory function. Conclusion: PspC is an adhesin for vitronectin, and the PspC-vitronectin interaction inhibits immune attack. Significance: The PspC-vitronectin interaction provides new insights into pneumococcal adhesion and complement inhibition. Adherence of Streptococcus pneumoniae is directly mediated by interactions of adhesins with eukaryotic cellular receptors or indirectly by exploiting matrix and serum proteins as molecular bridges. Pneumococci engage vitronectin, the human adhesive glycoprotein and complement inhibitor, to facilitate attachment to epithelial cells of the mucosal cavity, thereby modulating host cell signaling. In this study, we identified PspC as a vitronectin-binding protein interacting with the C-terminal heparin-binding domain of vitronectin. PspC is a multifunctional surface-exposed choline-binding protein displaying various adhesive properties. Vitronectin binding required the R domains in the mature PspC protein, which are also essential for the interaction with the ectodomain of the polymeric immunoglobulin receptor and secretory IgA. Consequently, secretory IgA competitively inhibited binding of vitronectin to purified PspC and to PspC-expressing pneumococci. In contrast, Factor H, which binds to the N-terminal part of mature PspC molecules, did not interfere with the PspC-vitronectin interaction. Using a series of vitronectin peptides, the C-terminal heparin-binding domain was shown to be essential for the interaction of soluble vitronectin with PspC. Binding experiments with immobilized vitronectin suggested a region N-terminal to the identified heparin-binding domain as an additional binding region for PspC, suggesting that soluble, immobilized, as well as cellularly bound vitronectin possesses different conformations. Finally, vitronectin bound to PspC was functionally active and inhibited the deposition of the terminal complement complex. In conclusion, this study identifies and characterizes (on the molecular level) the interaction between the pneumococcal adhesin PspC and the human glycoprotein vitronectin.


Journal of Immunology | 2008

Haemophilus influenzae interacts with the human complement inhibitor factor H

Teresia Hallström; Peter F. Zipfel; Anna M. Blom; Nadine Lauer; Arne Forsgren; Kristian Riesbeck

Pathogenic microbes acquire human complement inhibitors to circumvent the innate immune system. In this study, we identify two novel host-pathogen interactions, factor H (FH) and factor H-like protein 1 (FHL-1), the inhibitors of the alternative pathway that binds to Hib. A collection of clinical Haemophilus influenzae isolates was tested and the majority of encapsulated and unencapsulated bound FH. The isolate Hib 541 with a particularly high FH-binding was selected for detailed analysis. An increased survival in normal human serum was observed with Hib 541 as compared with the low FH-binding Hib 568. Interestingly, two binding domains were identified within FH; one binding site common to both FH and FHL-1 was located in the N-terminal short consensus repeat domains 6–7, whereas the other, specific for FH, was located in the C-terminal short consensus repeat domains 18–20. Importantly, both FH and FHL-1, when bound to the surface of Hib 541, retained cofactor activity as determined by analysis of C3b degradation. Two H. influenzae outer membrane proteins of ∼32 and 40 kDa were detected with radiolabeled FH in Far Western blot. Taken together, in addition to interactions with the classical, lectin, and terminal pathways, H. influenzae interferes with the alternative complement activation pathway by binding FH and FHL-1, and thereby reducing the complement-mediated bactericidal activity resulting in an increased survival. In contrast to incubation with active complement, H. influenzae had a reduced survival in FH-depleted human serum, thus demonstrating that FH mediates a protective role at the bacterial surface.


Blood | 2011

β2-glycoprotein I, the major target in antiphospholipid syndrome, is a special human complement regulator

Katharina Gropp; Nadia Weber; Michael Reuter; Sven Micklisch; Isabell Kopka; Teresia Hallström; Christine Skerka

The human plasma protein β(2)-glycoprotein I (β(2)-GPI) is the major target of autoantibodies associated with antiphospholipid syndrome. However, the biologic function of this abundant protein is still unclear. Here we identify β(2)-GPI as a complement regulator. β(2)-GPI circulates in the plasma in an inactive circular form. On surface binding, such as to apoptotic cells, β(2)-GPI changes conformation to an elongated form that acquires C3/C3b binding activities. β(2)-GPI apparently changes conformation of C3, so that the regulator factor H attaches and induces subsequent degradation by the protease factor I. β(2)-GPI also mediates further cleavage of C3/C3b compared with factor H alone. Our data provide important insights into innate immune regulation by plasma protein β(2)-GPI, which may be exploited in the prevention and therapy of autoimmune disease antiphospholipid syndrome.


Mbio | 2013

CspA from Borrelia burgdorferi Inhibits the Terminal Complement Pathway

Teresia Hallström; Corinna Siegel; Matthias Mörgelin; Peter Kraiczy; Christine Skerka; Peter F. Zipfel

ABSTRACT In order to survive and persist in an immunocompetent human host, Borrelia burgdorferi controls the human immune attack and blocks the damaging effects of the activated complement system. These Gram-negative spirochetes use CspA (CRASP-1) and four additional immune evasion proteins to bind combinations of human plasma regulators, including factor H, factor H-like protein 1 (FHL-1), complement factor H-related protein 1 (CFHR1), CFHR2, CFHR5, and plasminogen. As many microbial immune evasion proteins have multiple functions, we hypothesized that CspA has additional roles in complement or immune control. Here, we identify CspA as a terminal complement inhibitor. Borrelial CspA binds the human terminal complement components C7 and C9 and blocks assembly and membrane insertion of the terminal complement complex (TCC). CspA inhibits TCC assembly at the level of C7, as revealed by hemolytic assays, and inhibits polymerization of C9. CspA, when ectopically expressed on the surface of serum-sensitive Borrelia garinii, blocks TCC assembly on the level of C7 and induces serum resistance in the transformed bacteria. This CspA-mediated serum resistance and terminal complement pathway inhibition allow B. burgdorferi to survive in the hostile environment of human plasma. IMPORTANCE The present study defines a new mechanism by which the pathogenic bacterium Borrelia burgdorferi controls the terminal complement pathway of the human host to survive in human serum. The borrelial CspA binds to terminal pathway proteins C7 and C9 and inhibits the terminal complement pathway at the step of C7 and thereby inhibits terminal complement complex (TCC) assembly and membrane insertion. CspA blocks TCC assembly and insertion when expressed at the bacterial surface. CspA is the first TCC inhibitor cloned and functionally characterized from a Gram-negative bacterium. This identification of a bacterial TCC inhibitor of pathogen origin expands our knowledge of complement evasion of pathogenic bacteria and shows that pathogenic bacteria target the terminal pathway of complement. Thus, CspA as a central microbial virulence factor can represent an interesting biomarker and a target to develop new therapeutics and vaccines against borreliae. The present study defines a new mechanism by which the pathogenic bacterium Borrelia burgdorferi controls the terminal complement pathway of the human host to survive in human serum. The borrelial CspA binds to terminal pathway proteins C7 and C9 and inhibits the terminal complement pathway at the step of C7 and thereby inhibits terminal complement complex (TCC) assembly and membrane insertion. CspA blocks TCC assembly and insertion when expressed at the bacterial surface. CspA is the first TCC inhibitor cloned and functionally characterized from a Gram-negative bacterium. This identification of a bacterial TCC inhibitor of pathogen origin expands our knowledge of complement evasion of pathogenic bacteria and shows that pathogenic bacteria target the terminal pathway of complement. Thus, CspA as a central microbial virulence factor can represent an interesting biomarker and a target to develop new therapeutics and vaccines against borreliae.


PLOS ONE | 2010

Complement factor H-related proteins CFHR2 and CFHR5 represent novel ligands for the infection-associated CRASP proteins of Borrelia burgdorferi

Corinna Siegel; Teresia Hallström; Christine Skerka; Hannes U. Eberhardt; Barbara Uzonyi; Tobias Beckhaus; Michael Karas; Reinhard Wallich; Brian Stevenson; Peter F. Zipfel; Peter Kraiczy

Background One virulence property of Borrelia burgdorferi is its resistance to innate immunity, in particular to complement-mediated killing. Serum-resistant B. burgdorferi express up to five distinct complement regulator-acquiring surface proteins (CRASP) which interact with complement regulator factor H (CFH) and factor H-like protein 1 (FHL1) or factor H-related protein 1 (CFHR1). In the present study we elucidate the role of the infection-associated CRASP-3 and CRASP-5 protein to serve as ligands for additional complement regulatory proteins as well as for complement resistance of B. burgdorferi. Methodology/Principal Findings To elucidate whether CRASP-5 and CRASP-3 interact with various human proteins, both borrelial proteins were immobilized on magnetic beads. Following incubation with human serum, bound proteins were eluted and separated by Glycine-SDS-PAGE. In addition to CFH and CFHR1, complement regulators CFHR2 and CFHR5 were identified as novel ligands for both borrelial proteins by employing MALDI-TOF. To further assess the contributions of CRASP-3 and CRASP-5 to complement resistance, a serum-sensitive B. garinii strain G1 which lacks all CFH-binding proteins was used as a valuable model for functional analyses. Both CRASPs expressed on the B. garinii outer surface bound CFH as well as CFHR1 and CFHR2 in ELISA. In contrast, live B. garinii bound CFHR1, CFHR2, and CFHR5 and only miniscute amounts of CFH as demonstrated by serum adsorption assays and FACS analyses. Further functional analysis revealed that upon NHS incubation, CRASP-3 or CRASP-5 expressing borreliae were killed by complement. Conclusions/Significance In the absence of CFH and the presence of CFHR1, CFHR2 and CFHR5, assembly and integration of the membrane attack complex was not efficiently inhibited indicating that CFH in co-operation with CFHR1, CFHR2 and CFHR5 supports complement evasion of B. burgdorferi.


The Journal of Infectious Diseases | 2011

Haemophilus influenzae Protein E Binds to the Extracellular Matrix by Concurrently Interacting With Laminin and Vitronectin

Teresia Hallström; Birendra Singh; Fredrik Resman; Anna M. Blom; Matthias Mörgelin; Kristian Riesbeck

Nontypeable Haemophilus influenzae (NTHi) causes otitis media and is commonly found in patients with chronic obstructive pulmonary disease (COPD). Adhesins are important for bacterial attachment and colonization. Protein E (PE) is a recently characterized ubiquitous 16 kDa adhesin with vitronectin-binding capacity that results in increased survival in serum. In addition to PE, NTHi utilizes Haemophilus adhesion protein (Hap) that binds to the basement-membrane glycoprotein laminin. We show that most clinical isolates bind laminin and that both Hap and PE are crucial for the NTHi-dependent interaction with laminin as revealed with different mutants. The laminin-binding region is located at the N-terminus of PE, and PE binds to the heparin-binding C-terminal globular domain of laminin. PE simultaneously attracts vitronectin and laminin at separate binding sites, proving the multifunctional nature of the adhesin. This previously unknown PE-dependent interaction with laminin may contribute to NTHi colonization, particularly in smokers with COPD.


PLOS ONE | 2013

Human Factor H-Related Protein 2 (CFHR2) Regulates Complement Activation

Hannes U. Eberhardt; Denise Buhlmann; Peter Hortschansky; Qian Chen; Sascha Böhm; Markus J. Kemper; Reinhard Wallich; Andrea Hartmann; Teresia Hallström; Peter F. Zipfel; Christine Skerka

Mutations and deletions within the human CFHR gene cluster on chromosome 1 are associated with diseases, such as dense deposit disease, CFHR nephropathy or age-related macular degeneration. Resulting mutant CFHR proteins can affect complement regulation. Here we identify human CFHR2 as a novel alternative pathway complement regulator that inhibits the C3 alternative pathway convertase and terminal pathway assembly. CFHR2 is composed of four short consensus repeat domains (SCRs). Two CFHR2 molecules form a dimer through their N-terminal SCRs, and each of the two C-terminal ends can bind C3b. C3b bound CFHR2 still allows C3 convertase formation but the CFHR2 bound convertases do not cleave the substrate C3. Interestingly CFHR2 hardly competes off factor H from C3b. Thus CFHR2 likely acts in concert with factor H, as CFHR2 inhibits convertases while simultaneously allowing factor H assisted degradation by factor I.


Infection and Immunity | 2010

Trimer Stability of YadA Is Critical for Virulence of Yersinia enterocolitica

M. Schütz; E.-M. Weiss; M. Schindler; Teresia Hallström; Peter F. Zipfel; Dirk Linke; Ingo B. Autenrieth

ABSTRACT Yersinia adhesin A (YadA) is a trimeric autotransporter adhesin with multiple functions in host-pathogen interactions. The aim of this study was to dissect the virulence functions promoted by YadA in vitro and in vivo. To accomplish this, we generated Yersinia enterocolitica O:8 mutants expressing point mutations in YadA G389, a highly conserved residue in the membrane anchor of YadA, and analyzed their impact on YadA expression and virulence functions. We found that point mutations of YadA G389 led to impaired transport, stability, and surface display of YadA. YadA G389A and G389S mutants showed comparable YadA surface expression, autoagglutination, and adhesion to those of wild-type YadA but displayed reduced trimer stability and complement resistance in vitro and were 10- to 1,000-fold attenuated in experimental Y. enterocolitica infection in mice. The G389T, G389N, and G389H mutants lost trimer stability, exhibited strongly reduced surface display, autoagglutination, adhesion properties, and complement resistance, and were avirulent (>10,000-fold attenuation) in mice. Our data demonstrate that G389 is a critical residue of YadA, required for optimal trimer stability, transport, surface display, and serum resistance. We also show that stable trimeric YadA protein is essential for virulence of Y. enterocolitica.

Collaboration


Dive into the Teresia Hallström's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge