Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Terje Cruickshank Ahlquist is active.

Publication


Featured researches published by Terje Cruickshank Ahlquist.


Molecular Oncology | 2009

Autophagy in tumour suppression and promotion

Andreas Brech; Terje Cruickshank Ahlquist; Ragnhild A. Lothe; Harald Stenmark

Autophagy, a well‐described cellular mechanism for lysosomal degradation of cytoplasmic content, has emerged as a tumour suppression pathway. Recent evidence indicates that the tumour suppressor function of autophagy is mediated by scavenging of damaged oxidative organelles, thereby preventing accumulation of toxic oxygen radicals that would cause genome instability. Paradoxically, however, in some cases autophagy can also promote the survival of cancer cells once tumours have developed. This is attributed to the ability of autophagy to promote cell survival under conditions of poor nutrient supply, as often faced by solid tumours and metastasising cancer cells. In addition, autophagy is frequently upregulated in tumours as a response to therapy and may protect tumours against therapy‐induced apoptosis. In this review we discuss the mechanisms that link autophagy to tumour suppression and promotion and provide examples of the dual functions of autophagy in cancer.


Molecular Cancer | 2007

DNA methylation profiling of ovarian carcinomas and their in vitro models identifies HOXA9, HOXB5, SCGB3A1, and CRABP1 as novel targets

Qinghua Wu; Ragnhild A. Lothe; Terje Cruickshank Ahlquist; Ilvars Silins; Claes G. Tropé; Francesca Micci; Jahn M. Nesland; Zhenhe Suo; Guro E. Lind

BackgroundThe epigenetics of ovarian carcinogenesis remains poorly described. We have in the present study investigated the promoter methylation status of 13 genes in primary ovarian carcinomas (n = 52) and their in vitro models (n = 4; ES-2, OV-90, OVCAR-3, and SKOV-3) by methylation-specific polymerase chain reaction (MSP). Direct bisulphite sequencing analysis was used to confirm the methylation status of individual genes. The MSP results were compared with clinico- pathological features.ResultsEight out of the 13 genes were hypermethylated among the ovarian carcinomas, and altogether 40 of 52 tumours were methylated in one or more genes. Promoter hypermethylation of HOXA9, RASSF1A, APC, CDH13, HOXB5, SCGB3A1 (HIN-1), CRABP1, and MLH1 was found in 51% (26/51), 49% (23/47), 24% (12/51), 20% (10/51), 12% (6/52), 10% (5/52), 4% (2/48), and 2% (1/51) of the carcinomas, respectively, whereas ADAMTS1, MGMT, NR3C1, p14ARF, and p16INK 4awere unmethylated in all samples. The methylation frequencies of HOXA9 and SCGB3A1 were higher among relatively early-stage carcinomas (FIGO I-II) than among carcinomas of later stages (FIGO III-IV; P = 0.002, P = 0.020, respectively). The majority of the early-stage carcinomas were of the endometrioid histotype. Additionally, HOXA9 hypermethylation was more common in tumours from patients older than 60 years of age (15/21) than among those of younger age (11/30; P = 0.023). Finally, there was a significant difference in HOXA9 methylation frequency among the histological types (P = 0.007).ConclusionDNA hypermethylation of tumour suppressor genes seems to play an important role in ovarian carcinogenesis and HOXA9, HOXB5, SCGB3A1, and CRABP1 are identified as novel hypermethylated target genes in this tumour type.


Annals of Oncology | 2013

Microsatellite instability has a positive prognostic impact on stage II colorectal cancer after complete resection: results from a large, consecutive Norwegian series

Marianne A. Merok; Terje Cruickshank Ahlquist; E. C. Royrvik; K. F. Tufteland; Merete Hektoen; Ole H. Sjo; Tom Mala; Aud Svindland; Ragnhild A. Lothe; Arild Nesbakken

Background Microsatellite instability (MSI) was suggested as a marker for good prognosis in colorectal cancer in 1993 and a systematic review from 2005 and a meta-analysis from 2010 support the initial observation. We here assess the prognostic impact and prevalence of MSI in different stages in a consecutive, population-based series from a single hospital in Oslo, Norway. Patients and methods Of 1274 patients, 952 underwent major resection of which 805 were included in analyses of MSI prevalence and 613 with complete resection in analyses of outcome. Formalin-fixed tumor tissue was used for PCR-based MSI analyses. Results The overall prevalence of MSI was 14%, highest in females (19%) and in proximal colon cancer (29%). Five-year relapse-free survival (5-year RFS) was 67% and 55% (P = 0.030) in patients with MSI and MSS tumors, respectively, with the hazard ratio (HR) equal to 1.60 (P = 0.045) in multivariate analysis. The improved outcome was confined to stage II patients who had 5-year RFS of 74% and 56% respectively (P = 0.010), HR = 2.02 (P = 0.040). Examination of 12 or more lymph nodes was significantly associated with proximal tumor location (P < 0.001). Conclusions MSI has an independent positive prognostic impact on stage II colorectal cancer patients after complete resection.


The Journal of Pathology | 2009

Germline and somatic NF1 mutations in sporadic and NF1‐associated malignant peripheral nerve sheath tumours

Irene Bottillo; Terje Cruickshank Ahlquist; Helge R. Brekke; Stine A. Danielsen; Eva van den Berg; Fredrik Mertens; Ragnhild A. Lothe; Bruno Dallapiccola

Malignant peripheral nerve sheath tumours (MPNSTs) are a malignancy occurring with increased frequency in patients with neurofibromatosis type 1 (NF1). In contrast to the well‐known spectrum of germline NF1 mutations, the information on somatic mutations in MPNSTs is limited. In this study, we screened NF1, KRAS, and BRAF in 47 MPNSTs from patients with (n = 25) and without (n = 22) NF1. In addition, DNA from peripheral blood and cutaneous neurofibroma biopsies from, respectively, 14/25 and 7/25 of the NF1 patients were analysed. Germline NF1 mutations were detected in ten NF1 patients, including three frameshift, three nonsense, one missense, one splicing alteration, and two large deletions. Somatic NF1 mutations were found in 10/25 (40%) NF1‐associated MPNSTs, in 3/7 (43%) neurofibromas, and in 9/22 (41%) sporadic MPNSTs. Large genomic copy number changes accounted for 6/10 and 7/13 somatic mutations in NF1‐associated and sporadic MPNSTs, respectively. Two NF1‐associated and 13 sporadic MPNSTs did not show any NF1 mutation. A major role of the KRAS and BRAF genes was ruled out. The spectrum of germline NF1 mutations in neurofibromatosis patients with MPNST is different from the spectrum of somatic mutations seen in MPNSTs. However, the somatic events share common characteristics with the NF1‐related and the sporadic tumours. Copyright


Molecular Cancer | 2008

Gene methylation profiles of normal mucosa, and benign and malignant colorectal tumors identify early onset markers.

Terje Cruickshank Ahlquist; Guro E. Lind; Vera L. Costa; Gunn Iren Meling; Morten H. Vatn; Geir Hoff; Torleiv O. Rognum; Rolf I. Skotheim; Espen Thiis-Evensen; Ragnhild A. Lothe

BackgroundMultiple epigenetic and genetic changes have been reported in colorectal tumors, but few of these have clinical impact. This study aims to pinpoint epigenetic markers that can discriminate between non-malignant and malignant tissue from the large bowel, i.e. markers with diagnostic potential.The methylation status of eleven genes (ADAMTS1, CDKN2A, CRABP1, HOXA9, MAL, MGMT, MLH1, NR3C1, PTEN, RUNX3, and SCGB3A1) was determined in 154 tissue samples including normal mucosa, adenomas, and carcinomas of the colorectum. The gene-specific and widespread methylation status among the carcinomas was related to patient gender and age, and microsatellite instability status. Possible CIMP tumors were identified by comparing the methylation profile with microsatellite instability (MSI), BRAF-, KRAS-, and TP53 mutation status.ResultsThe mean number of methylated genes per sample was 0.4 in normal colon mucosa from tumor-free individuals, 1.2 in mucosa from cancerous bowels, 2.2 in adenomas, and 3.9 in carcinomas. Widespread methylation was found in both adenomas and carcinomas. The promoters of ADAMTS1, MAL, and MGMT were frequently methylated in benign samples as well as in malignant tumors, independent of microsatellite instability. In contrast, normal mucosa samples taken from bowels without tumor were rarely methylated for the same genes. Hypermethylated CRABP1, MLH1, NR3C1, RUNX3, and SCGB3A1 were shown to be identifiers of carcinomas with microsatellite instability. In agreement with the CIMP concept, MSI and mutated BRAF were associated with samples harboring hypermethylation of several target genes.ConclusionMethylated ADAMTS1, MGMT, and MAL are suitable as markers for early tumor detection.


Molecular Cancer | 2011

Identification of an epigenetic biomarker panel with high sensitivity and specificity for colorectal cancer and adenomas.

Guro E. Lind; Stine A. Danielsen; Terje Cruickshank Ahlquist; Marianne A. Merok; Kim Andresen; Rolf I. Skotheim; Merete Hektoen; Torleiv O. Rognum; Gunn Iren Meling; Geir Hoff; Michael Bretthauer; Espen Thiis-Evensen; Arild Nesbakken; Ragnhild A. Lothe

BackgroundThe presence of cancer-specific DNA methylation patterns in epithelial colorectal cells in human feces provides the prospect of a simple, non-invasive screening test for colorectal cancer and its precursor, the adenoma. This study investigates a panel of epigenetic markers for the detection of colorectal cancer and adenomas.MethodsCandidate biomarkers were subjected to quantitative methylation analysis in test sets of tissue samples from colorectal cancers, adenomas, and normal colonic mucosa. All findings were verified in independent clinical validation series. A total of 523 human samples were included in the study. Receiver operating characteristic (ROC) curve analysis was used to evaluate the performance of the biomarker panel.ResultsPromoter hypermethylation of the genes CNRIP1, FBN1, INA, MAL, SNCA, and SPG20 was frequent in both colorectal cancers (65-94%) and adenomas (35-91%), whereas normal mucosa samples were rarely (0-5%) methylated. The combined sensitivity of at least two positives among the six markers was 94% for colorectal cancers and 93% for adenoma samples, with a specificity of 98%. The resulting areas under the ROC curve were 0.984 for cancers and 0.968 for adenomas versus normal mucosa.ConclusionsThe novel epigenetic marker panel shows very high sensitivity and specificity for both colorectal cancers and adenomas. Our findings suggest this biomarker panel to be highly suitable for early tumor detection.


PLOS ONE | 2010

DNA sequence profiles of the colorectal cancer critical gene set KRAS-BRAF-PIK3CA-PTEN-TP53 related to age at disease onset.

Marianne Berg; Stine A. Danielsen; Terje Cruickshank Ahlquist; Marianne A. Merok; Trude H. Ågesen; Morten H. Vatn; Tom Mala; Ole H. Sjo; Arne Bakka; Ingvild Moberg; Torunn Fetveit; Øystein Mathisen; Anders Husby; Oddvar Sandvik; Arild Nesbakken; Espen Thiis-Evensen; Ragnhild A. Lothe

The incidence of colorectal cancer (CRC) increases with age and early onset indicates an increased likelihood for genetic predisposition for this disease. The somatic genetics of tumor development in relation to patient age remains mostly unknown. We have examined the mutation status of five known cancer critical genes in relation to age at diagnosis, and compared the genomic complexity of tumors from young patients without known CRC syndromes with those from elderly patients. Among 181 CRC patients, stratified by microsatellite instability status, DNA sequence changes were identified in KRAS (32%), BRAF (16%), PIK3CA (4%), PTEN (14%) and TP53 (51%). In patients younger than 50 years (n = 45), PIK3CA mutations were not observed and TP53 mutations were more frequent than in the older age groups. The total gene mutation index was lowest in tumors from the youngest patients. In contrast, the genome complexity, assessed as copy number aberrations, was highest in tumors from the youngest patients. A comparable number of tumors from young (<50 years) and old patients (>70 years) was quadruple negative for the four predictive gene markers (KRAS-BRAF-PIK3CA-PTEN); however, 16% of young versus only 1% of the old patients had tumor mutations in PTEN/PIK3CA exclusively. This implies that mutation testing for prediction of EGFR treatment response may be restricted to KRAS and BRAF in elderly (>70 years) patients. Distinct genetic differences found in tumors from young and elderly patients, whom are comparable for known clinical and pathological variables, indicate that young patients have a different genetic risk profile for CRC development than older patients.


Autophagy | 2010

UVRAG mutations associated with microsatellite unstable colon cancer do not affect autophagy.

Helene Knævelsrud; Terje Cruickshank Ahlquist; Marianne A. Merok; Arild Nesbakken; Harald Stenmark; Ragnhild A. Lothe; Anne Simonsen

Reduced levels of autophagy correlate with tumorigenesis, and several inducers of autophagy have been found to be tumor suppressors. One such autophagic inducer is the Beclin 1 binding protein UVRAG, a positive regulator of the class III PI3K/Vps34 complex. UVRAG has been implicated in the formation and maturation of autophagosomes, as well as in endocytic trafficking and suppression of proliferation and in vivo tumorigenicity. In this study we show that approximately one-third of a large series of colon carcinomas with microsatellite instability (MSI ) (n = 102) carry a monoallelic UVRAG mutation, leading to expression of a truncated protein, indicating that this event is involved in tumorigenesis. In order to investigate whether the high incidence of UVRAG mutation in MSI colorectal carcinomas is associated with dysfunctional autophagy we analyzed autophagy levels in several colon cancer cell lines that express wild-type or mutant UVRAG protein. No reduction in autophagy was detected in cell lines expressing mutant UVRAG. Consistent with this, depletion of UVRAG in HE K cells stably expressing GFP-LC3 did not inhibit autophagy, but did decrease epidermal growth factor receptor (EGFR) degradation. Overall our results show that there is no correlation between the presence of the monoallelic UVRAG mutation and inhibition of autophagy. Thus, our data indicate that mechanisms other than autophagy contribute to the tumorigenicity of microsatellite unstable colon carcinomas with monoallelic UVRAG mutation.


Journal of Translational Medicine | 2008

Hypermethylated MAL gene - a silent marker of early colon tumorigenesis.

Guro E. Lind; Terje Cruickshank Ahlquist; Matthias Kolberg; Marianne Berg; Mette Eknæs; Miguel A. Alonso; Anne Kallioniemi; Gunn Iren Meling; Rolf I. Skotheim; Torleiv O. Rognum; Espen Thiis-Evensen; Ragnhild A. Lothe

BackgroundTumor-derived aberrantly methylated DNA might serve as diagnostic biomarkers for cancer, but so far, few such markers have been identified. The aim of the present study was to investigate the potential of the MAL (T-cell differentiation protein) gene as an early epigenetic diagnostic marker for colorectal tumors.MethodsUsing methylation-specific polymerase chain reaction (MSP) the promoter methylation status of MAL was analyzed in 218 samples, including normal mucosa (n = 44), colorectal adenomas (n = 63), carcinomas (n = 65), and various cancer cell lines (n = 46). Direct bisulphite sequencing was performed to confirm the MSP results. MAL gene expression was investigated with real time quantitative analyses before and after epigenetic drug treatment. Immunohistochemical analysis of MAL was done using normal colon mucosa samples (n = 5) and a tissue microarray with 292 colorectal tumors.ResultsBisulphite sequencing revealed that the methylation was unequally distributed within the MAL promoter and by MSP analysis a region close to the transcription start point was shown to be hypermethylated in the majority of colorectal carcinomas (49/61, 80%) as well as in adenomas (45/63, 71%). In contrast, only a minority of the normal mucosa samples displayed hypermethylation (1/23, 4%). The hypermethylation of MAL was significantly associated with reduced or lost gene expression in in vitro models. Furthermore, removal of the methylation re-induced gene expression in colon cancer cell lines. Finally, MAL protein was expressed in epithelial cells of normal colon mucosa, but not in the malignant cells of the same type.ConclusionPromoter hypermethylation of MAL was present in the vast majority of benign and malignant colorectal tumors, and only rarely in normal mucosa, which makes it suitable as a diagnostic marker for early colorectal tumorigenesis.


BMC Cancer | 2010

Colorectal carcinomas with microsatellite instability display a different pattern of target gene mutations according to large bowel site of origin

Manuela Pinheiro; Terje Cruickshank Ahlquist; Stine A. Danielsen; Guro E. Lind; Isabel Veiga; Carla Pinto; Vera L. Costa; Luís Pedro Afonso; Olga Sousa; Maria Fragoso; Lúcio Lara Santos; Rui Henrique; Paula Lopes; Carlos Lopes; Ragnhild A. Lothe; Manuel R. Teixeira

BackgroundOnly a few studies have addressed the molecular pathways specifically involved in carcinogenesis of the distal colon and rectum. We aimed to identify potential differences among genetic alterations in distal colon and rectal carcinomas as compared to cancers arising elsewhere in the large bowel.MethodsConstitutional and tumor DNA from a test series of 37 patients with rectal and 25 patients with sigmoid carcinomas, previously analyzed for microsatellite instability (MSI), was studied for BAX, IGF2R, TGFBR2, MSH3, and MSH6 microsatellite sequence alterations, BRAF and KRAS mutations, and MLH1 promoter methylation. The findings were then compared with those of an independent validation series consisting of 36 MSI-H carcinomas with origin from each of the large bowel regions. Immunohistochemical and germline mutation analyses of the mismatch repair system were performed when appropriate.ResultsIn the test series, IGFR2 and BAX mutations were present in one and two out of the six distal MSI-H carcinomas, respectively, and no mutations were detected in TGFBR2, MSH3, and MSH6. We confirmed these findings in the validation series, with TGFBR2 and MSH3 microsatellite mutations occurring less frequently in MSI-H rectal and sigmoid carcinomas than in MSI-H colon carcinomas elsewhere (P = 0.00005 and P = 0.0000005, respectively, when considering all MSI-carcinomas of both series). No MLH1 promoter methylation was observed in the MSI-H rectal and sigmoid carcinomas of both series, as compared to 53% found in MSI-H carcinomas from other locations (P = 0.004). KRAS and BRAF mutational frequencies were 19% and 43% in proximal carcinomas and 25% and 17% in rectal/sigmoid carcinomas, respectively.ConclusionThe mechanism and the pattern of genetic changes driving MSI-H carcinogenesis in distal colon and rectum appears to differ from that occurring elsewhere in the colon and further investigation is warranted both in patients with sporadic or hereditary disease.

Collaboration


Dive into the Terje Cruickshank Ahlquist's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Guro E. Lind

Oslo University Hospital

View shared research outputs
Top Co-Authors

Avatar

Torleiv O. Rognum

Norwegian Institute of Public Health

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge