Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Tero-Pekka Alastalo is active.

Publication


Featured researches published by Tero-Pekka Alastalo.


Journal of Clinical Investigation | 2008

An antiproliferative BMP-2/PPARγ/apoE axis in human and murine SMCs and its role in pulmonary hypertension

Georg Hansmann; Vinicio de Jesus Perez; Tero-Pekka Alastalo; Cristina M. Alvira; Christophe Guignabert; Janine M. Bekker; Stefan Schellong; Takashi Urashima; Lingli Wang; Nicholas W. Morrell; Marlene Rabinovitch

Loss-of-function mutations in bone morphogenetic protein receptor II (BMP-RII) are linked to pulmonary arterial hypertension (PAH); the ligand for BMP-RII, BMP-2, is a negative regulator of SMC growth. Here, we report an interplay between PPARgamma and its transcriptional target apoE downstream of BMP-2 signaling. BMP-2/BMP-RII signaling prevented PDGF-BB-induced proliferation of human and murine pulmonary artery SMCs (PASMCs) by decreasing nuclear phospho-ERK and inducing DNA binding of PPARgamma that is independent of Smad1/5/8 phosphorylation. Both BMP-2 and a PPARgamma agonist stimulated production and secretion of apoE by SMCs. Using a variety of methods, including short hairpin RNAi in human PASMCs, PAH patient-derived BMP-RII mutant PASMCs, a PPARgamma antagonist, and PASMCs isolated from PPARgamma- and apoE-deficient mice, we demonstrated that the antiproliferative effect of BMP-2 was BMP-RII, PPARgamma, and apoE dependent. Furthermore, we created mice with targeted deletion of PPARgamma in SMCs and showed that they spontaneously developed PAH, as indicated by elevated RV systolic pressure, RV hypertrophy, and increased muscularization of the distal pulmonary arteries. Thus, PPARgamma-mediated events could protect against PAH, and PPARgamma agonists may reverse PAH in patients with or without BMP-RII dysfunction.


Journal of Cell Biology | 2009

Bone morphogenetic protein 2 induces pulmonary angiogenesis via Wnt–β-catenin and Wnt–RhoA–Rac1 pathways

Vinicio de Jesus Perez; Tero-Pekka Alastalo; Jenny Wu; Jeffrey D. Axelrod; John P. Cooke; Manuel R. Amieva; Marlene Rabinovitch

Mutations in bone morphogenetic protein (BMP) receptor II (BMPRII) are associated with pulmonary artery endothelial cell (PAEC) apoptosis and the loss of small vessels seen in idiopathic pulmonary arterial hypertension. Given the low penetrance of BMPRII mutations, abnormalities in other converging signaling pathways may be necessary for disease development. We hypothesized that BMPRII supports normal PAEC function by recruiting Wingless (Wnt) signaling pathways to promote proliferation, survival, and motility. In this study, we report that BMP-2, via BMPRII-mediated inhibition of GSK3-β, induces β-catenin (β-C) accumulation and transcriptional activity necessary for PAEC survival and proliferation. At the same time, BMP-2 mediates phosphorylated Smad1 (pSmad1) or, with loss of BMPRII, pSmad3-dependent recruitment of Disheveled (Dvl) to promote RhoA–Rac1 signaling necessary for motility. Finally, using an angiogenesis assay in severe combined immunodeficient mice, we demonstrate that both β-C– and Dvl-mediated RhoA–Rac1 activation are necessary for vascular growth in vivo. These findings suggest that the recruitment of both canonical and noncanonical Wnt pathways is required in BMP-2–mediated angiogenesis.


Journal of Clinical Investigation | 2011

Disruption of PPARγ/β-catenin–mediated regulation of apelin impairs BMP-induced mouse and human pulmonary arterial EC survival

Tero-Pekka Alastalo; Molong Li; Vinicio de Jesus Perez; David Pham; Hirofumi Sawada; Jordon K. Wang; Minna Koskenvuo; Lingli Wang; Bruce A. Freeman; Howard Y. Chang; Marlene Rabinovitch

Reduced bone morphogenetic protein receptor 2 (BMPR2) expression in patients with pulmonary arterial hypertension (PAH) can impair pulmonary arterial EC (PAEC) function. This can adversely affect EC survival and promote SMC proliferation. We hypothesized that interventions to normalize expression of genes that are targets of BMPR2 signaling could restore PAEC function and prevent or reverse PAH. Here we have characterized, in human PAECs, a BMPR2-mediated transcriptional complex between PPARγ and β-catenin and shown that disruption of this complex impaired BMP-mediated PAEC survival. Using whole genome-wide ChIP-Chip promoter analysis and gene expression microarrays, we delineated PPARγ/β-catenin-dependent transcription of target genes including APLN, which encodes apelin. We documented reduced PAEC expression of apelin in PAH patients versus controls. In cell culture experiments, we showed that apelin-deficient PAECs were prone to apoptosis and promoted pulmonary arterial SMC (PASMC) proliferation. Conversely, we established that apelin, like BMPR2 ligands, suppressed proliferation and induced apoptosis of PASMCs. Consistent with these functions, administration of apelin reversed PAH in mice with reduced production of apelin resulting from deletion of PPARγ in ECs. Taken together, our findings suggest that apelin could be effective in treating PAH by rescuing BMPR2 and PAEC dysfunction.


American Journal of Respiratory and Critical Care Medicine | 2011

Autophagic Protein LC3B Confers Resistance against Hypoxia-induced Pulmonary Hypertension

Seon-Jin Lee; Akaya Smith; Lanping Guo; Tero-Pekka Alastalo; Molong Li; Hirofumi Sawada; Xiaoli Liu; Zhihua Chen; Emeka Ifedigbo; Yang Jin; Carol A. Feghali-Bostwick; Stefan W. Ryter; Hong Pyo Kim; Marlene Rabinovitch; Augustine M. K. Choi

RATIONALE Pulmonary hypertension (PH) is a progressive disease with unclear etiology. The significance of autophagy in PH remains unknown. OBJECTIVES To determine the mechanisms by which autophagic proteins regulate tissue responses during PH. METHODS Lungs from patients with PH, lungs from mice exposed to chronic hypoxia, and human pulmonary vascular cells were examined for autophagy using electron microscopy and Western analysis. Mice deficient in microtubule-associated protein-1 light chain-3B (LC3B(-/-)), or early growth response-1 (Egr-1(-/-)), were evaluated for vascular morphology and hemodynamics. MEASUREMENTS AND MAIN RESULTS Human PH lungs displayed elevated lipid-conjugated LC3B, and autophagosomes relative to normal lungs. These autophagic markers increased in hypoxic mice, and in human pulmonary vascular cells exposed to hypoxia. Egr-1, which regulates LC3B expression, was elevated in PH, and increased by hypoxia in vivo and in vitro. LC3B(-/-) or Egr-1(-/-), but not Beclin 1(+/-), mice displayed exaggerated PH during hypoxia. In vitro, LC3B knockdown increased reactive oxygen species production, hypoxia-inducible factor-1α stabilization, and hypoxic cell proliferation. LC3B and Egr-1 localized to caveolae, associated with caveolin-1, and trafficked to the cytosol during hypoxia. CONCLUSIONS The results demonstrate elevated LC3B in the lungs of humans with PH, and of mice with hypoxic PH. The increased susceptibility of LC3B(-/-) and Egr-1(-/-) mice to hypoxia-induced PH and increased hypoxic proliferation of LC3B knockdown cells suggest adaptive functions of these proteins during hypoxic vascular remodeling. The results suggest that autophagic protein LC3B exerts a protective function during the pathogenesis of PH, through the regulation of hypoxic cell proliferation.


American Journal of Physiology-lung Cellular and Molecular Physiology | 2009

Tie2-mediated loss of peroxisome proliferator-activated receptor-γ in mice causes PDGF receptor-β-dependent pulmonary arterial muscularization

Christophe Guignabert; Cristina M. Alvira; Tero-Pekka Alastalo; Hirofumi Sawada; Georg Hansmann; Mingming Zhao; Lijuan Wang; Nesrine El-Bizri; Marlene Rabinovitch

Peroxisome proliferator-activated receptor (PPAR)-gamma is reduced in pulmonary arteries (PAs) of patients with PA hypertension (PAH), and we reported that deletion of PPARgamma in smooth muscle cells (SMCs) of transgenic mice results in PAH. However, the sequelae of loss of PPARgamma in PA endothelial cells (ECs) are unknown. Therefore, we bred Tie2-Cre mice with PPARgamma(flox/flox) mice to induce EC loss of PPARgamma (Tie2 PPARgamma(-/-)), and we assessed PAH by right ventricular systolic pressure (RVSP), RV hypertrophy (RVH), and muscularized distal PAs in room air (RA), after chronic hypoxia (CH), and after 4 wk of recovery in RA (Rec-RA). The Tie2 PPARgamma(-/-) mice developed spontaneous PAH in RA with increased RVSP, RVH, and muscularized PAs vs. wild type (WT); both genotypes exhibited a similar degree of PAH following chronic hypoxia, but Tie2 PPARgamma(-/-) mice had more residual PAH compared with WT mice after Rec-RA. The Tie2 PPARgamma(-/-) vs. WT mice in RA had increased platelet-derived growth factor receptor-beta (PDGF-Rbeta) expression and signaling, despite an elevation in the PPARgamma target apolipoprotein E, an inhibitor of PDGF signaling. Inhibition of PDGF-Rbeta signaling with imatinib, however, was sufficient to reverse the PAH observed in the Tie2 PPARgamma(-/-) mice. Thus the disruption of PPARgamma signaling in EC is sufficient to cause mild PAH and to impair recovery from CH-induced PAH. Inhibition of heightened PDGF-Rbeta signaling is sufficient to reverse PAH in this genetic model.


Journal of Cell Science | 2003

Formation of nuclear stress granules involves HSF2 and coincides with the nucleolar localization of Hsp70

Tero-Pekka Alastalo; Maria Hellesuo; Anton Sandqvist; Ville Hietakangas; Marko J. Kallio; Lea Sistonen

The heat-shock response is characterized by the activation of heat-shock transcription factor 1 (HSF1), followed by increased expression of heat-shock proteins (Hsps). The stress-induced subnuclear compartmentalization of HSF1 into nuclear stress granules has been suggested to be an important control step in the regulation of stress response and cellular homeostasis in human cells. In this study, we demonstrate that the less-well characterized HSF2 interacts physically with HSF1 and is a novel stress-responsive component of the stress granules. Based on analysis of our deletion mutants, HSF2 influences to the localization of HSF1 in stress granules. Moreover, our results indicate that the stress granules are dynamic structures and suggest that they might be regulated in an Hsp70-dependent manner. The reversible localization of Hsp70 in the nucleoli strictly coincides with the presence of HSF1 in stress granules and is dramatically suppressed in thermotolerant cells. We propose that the regulated subcellular distribution of Hsp70 is an important regulatory mechanism of HSF1-mediated heat shock response.


Circulation Research | 2009

S100A4 and Bone Morphogenetic Protein-2 Codependently Induce Vascular Smooth Muscle Cell Migration via Phospho–Extracellular Signal-Regulated Kinase and Chloride Intracellular Channel 4

Edda Spiekerkoetter; Christophe Guignabert; Vinicio de Jesus Perez; Tero-Pekka Alastalo; Janine M. Powers; Lingli Wang; Allan Lawrie; Noona Ambartsumian; Ann Marie Schmidt; Mark Berryman; Richard H. Ashley; Marlene Rabinovitch

Rationale: S100A4/Mts1 is implicated in motility of human pulmonary artery smooth muscle cells (hPASMCs), through an interaction with the RAGE (receptor for advanced glycation end products). Objective: We hypothesized that S100A4/Mts1-mediated hPASMC motility might be enhanced by loss of function of bone morphogenetic protein (BMP) receptor (BMPR)II, observed in pulmonary arterial hypertension. Methods and Results: Both S100A4/Mts1 (500 ng/mL) and BMP-2 (10 ng/mL) induce migration of hPASMCs in a novel codependent manner, in that the response to either ligand is lost with anti-RAGE or BMPRII short interference (si)RNA. Phosphorylation of extracellular signal-regulated kinase is induced by both ligands and is required for motility by inducing matrix metalloproteinase 2 activity, but phospho–extracellular signal-regulated kinase 1/2 is blocked by anti-RAGE and not by BMPRII short interference RNA. In contrast, BMPRII short interference RNA, but not anti-RAGE, reduces expression of intracellular chloride channel (CLIC)4, a scaffolding molecule necessary for motility in response to S100A4/Mts1 or BMP-2. Reduced CLIC4 expression does not interfere with S100A4/Mts1 internalization or its interaction with myosin heavy chain IIA, but does alter alignment of myosin heavy chain IIA and actin filaments creating the appearance of vacuoles. This abnormality is associated with reduced peripheral distribution and/or delayed activation of RhoA and Rac1, small GTPases required for retraction and extension of lamellipodia in motile cells. Conclusions: Our studies demonstrate how a single ligand (BMP-2 or S100A4/Mts1) can recruit multiple cell surface receptors to relay signals that coordinate events culminating in a functional response, ie, cell motility. We speculate that this carefully controlled process limits signals from multiple ligands, but could be subverted in disease.


Journal of Experimental Medicine | 2014

Reduced BMPR2 expression induces GM-CSF translation and macrophage recruitment in humans and mice to exacerbate pulmonary hypertension

Hirofumi Sawada; Toshie Saito; Nils Nickel; Tero-Pekka Alastalo; Jason P. Glotzbach; Roshelle Chan; Leila Haghighat; Gabriele Fuchs; Michael Januszyk; Aiqin Cao; Ying-Ju Lai; Vinicio de Jesus Perez; Yu-Mee Kim; Lingli Wang; Pin-I Chen; Edda Spiekerkoetter; Yoshihide Mitani; Geoffrey C. Gurtner; Peter Sarnow; Marlene Rabinovitch

Reduced expression of bone morphogenetic protein receptor 2 subverts a stress granule response, heightens GM-CSF mRNA translation, and increases inflammatory cell recruitment to exacerbate pulmonary arterial hypertension.


American Journal of Physiology-lung Cellular and Molecular Physiology | 2012

Inhibiting NF-κB in the developing lung disrupts angiogenesis and alveolarization.

Cristiana Iosef; Tero-Pekka Alastalo; Yanli Hou; Chihhsin Chen; Eloa S. Adams; Shu-Chen Lyu; David N. Cornfield; Cristina M. Alvira

Bronchopulmonary dysplasia (BPD), a chronic lung disease of infancy, is characterized by arrested alveolar development. Pulmonary angiogenesis, mediated by the vascular endothelial growth factor (VEGF) pathway, is essential for alveolarization. However, the transcriptional regulators mediating pulmonary angiogenesis remain unknown. We previously demonstrated that NF-κB, a transcription factor traditionally associated with inflammation, plays a unique protective role in the neonatal lung. Therefore, we hypothesized that constitutive NF-κB activity is essential for postnatal lung development. Blocking NF-κB activity in 6-day-old neonatal mice induced the alveolar simplification similar to that observed in BPD and significantly reduced pulmonary capillary density. Studies to determine the mechanism responsible for this effect identified greater constitutive NF-κB in neonatal lung and in primary pulmonary endothelial cells (PEC) compared with adult. Moreover, inhibiting constitutive NF-κB activity in the neonatal PEC with either pharmacological inhibitors or RNA interference blocked PEC survival, decreased proliferation, and impaired in vitro angiogenesis. Finally, by chromatin immunoprecipitation, NF-κB was found to be a direct regulator of the angiogenic mediator, VEGF-receptor-2, in the neonatal pulmonary vasculature. Taken together, our data identify an entirely novel role for NF-κB in promoting physiological angiogenesis and alveolarization in the developing lung. Our data suggest that disruption of NF-κB signaling may contribute to the pathogenesis of BPD and that enhancement of NF-κB may represent a viable therapeutic strategy to promote lung growth and regeneration in pulmonary diseases marked by impaired angiogenesis.


Journal of Cell Biology | 2011

BMP promotes motility and represses growth of smooth muscle cells by activation of tandem Wnt pathways

Vinicio de Jesus Perez; Ziad Ali; Tero-Pekka Alastalo; Fumiaki Ikeno; Hirofumi Sawada; Ying Ju Lai; Thomas Kleisli; Edda Spiekerkoetter; Xiumei Qu; Laura H. Rubinos; Euan A. Ashley; Manuel R. Amieva; Shoukat Dedhar; Marlene Rabinovitch

Vascular smooth muscle cell motility relies on interdependent activation of canonical and noncanonical Wnt signal transduction pathways; fibronectin, produced in response to BMP-2–mediated activation of β-catenin, promotes motility by activating an integrin-linked kinase via α4-integrin.

Collaboration


Dive into the Tero-Pekka Alastalo's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Mikko Helenius

Helsinki University Central Hospital

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Pekka Taimen

Turku University Hospital

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge