Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Terrance A. Stadheim is active.

Publication


Featured researches published by Terrance A. Stadheim.


Science | 2006

Humanization of Yeast to Produce Complex Terminally Sialylated Glycoproteins

Stephen R. Hamilton; Robert C. Davidson; Natarajan Sethuraman; Juergen Hermann Nett; Youwei Jiang; Sandra Rios; Piotr Bobrowicz; Terrance A. Stadheim; Huijuan Li; Byung-Kwon Choi; Daniel Hopkins; Harry Wischnewski; Jessica Roser; Teresa I. Mitchell; Rendall R. Strawbridge; Jack Hoopes; Stefan Wildt; Tillman U. Gerngross

Yeast is a widely used recombinant protein expression system. We expanded its utility by engineering the yeast Pichia pastoris to secrete human glycoproteins with fully complex terminally sialylated N-glycans. After the knockout of four genes to eliminate yeast-specific glycosylation, we introduced 14 heterologous genes, allowing us to replicate the sequential steps of human glycosylation. The reported cell lines produce complex glycoproteins with greater than 90% terminal sialylation. Finally, to demonstrate the utility of these yeast strains, functional recombinant erythropoietin was produced.


Nature Biotechnology | 2006

Optimization of humanized IgGs in glycoengineered Pichia pastoris

Huijuan Li; Natarajan Sethuraman; Terrance A. Stadheim; Dongxing Zha; Bianka Prinz; Nicole Ballew; Piotr Bobrowicz; Byung-Kwon Choi; W. James Cook; Michael Cukan; Nga Rewa Houston-Cummings; Robert C. Davidson; Bing Gong; Stephen R. Hamilton; Jack Hoopes; Youwei Jiang; Nam Kim; Renee Mansfield; Juergen Hermann Nett; Sandra Rios; Rendall R. Strawbridge; Stefan Wildt; Tillman U. Gerngross

As the fastest growing class of therapeutic proteins, monoclonal antibodies (mAbs) represent a major potential drug class. Human antibodies are glycosylated in their native state and all clinically approved mAbs are produced by mammalian cell lines, which secrete mAbs with glycosylation structures that are similar, but not identical, to their human counterparts. Glycosylation of mAbs influences their interaction with immune effector cells that kill antibody-targeted cells. Here we demonstrate that human antibodies with specific human N-glycan structures can be produced in glycoengineered lines of the yeast Pichia pastoris and that antibody-mediated effector functions can be optimized by generating specific glycoforms. Glycoengineered P. pastoris provides a general platform for producing recombinant antibodies with human N-glycosylation.


Journal of Biotechnology | 2009

Production of monoclonal antibodies by glycoengineered Pichia pastoris.

Thomas I. Potgieter; Michael Cukan; James E. Drummond; Nga Rewa Houston-Cummings; Youwei Jiang; Fang Li; Heather Lynaugh; Muralidhar R. Mallem; Troy W. McKelvey; Teresa Mitchell; Adam Nylen; Alissa Rittenhour; Terrance A. Stadheim; Dongxing Zha; Marc d’Anjou

The growing antibody market and the pressure to improve productivity as well as reduce cost of production have fueled the development of alternative expression systems. The therapeutic function of many antibodies is influenced by N-linked glycosylation, which is affected by a combination of the expression host and culture conditions. This paper reports the generation of a glycoengineered Pichia pastoris strain capable of producing more than 1 g l(-1) of a functional monoclonal antibody in a robust, scalable and portable cultivation process with uniform N-linked glycans of the type Man(5)GlcNAc(2). N-linked glycan uniformity and volumetric productivity have been maintained across a range of cultivation process conditions including pH (5.5-7.5), temperature (16-24 degrees C), dissolved oxygen concentration (0.85-3.40 mg l(-1)) and specific methanol feed rate (9-19 mg g(-1) h(-1)) as well as across different cultivation scales (0.5, 3.0, 15 and 40 l). Compared to a marketed CHO-produced therapeutic antibody, the glycoengineered yeast-produced antibody has similar motilities on SDS-PAGE, comparable size exclusion chromatograms (SEC) and antigen binding affinities. This paper provides proof of concept that glycoengineered yeast can be used to produce functional full-length monoclonal antibodies at commercially viable productivities.


Journal of Biological Chemistry | 2002

The Novel Triterpenoid 2-Cyano-3,12-dioxooleana-1,9-dien-28-oic acid (CDDO) Potently Enhances Apoptosis Induced by Tumor Necrosis Factor in Human Leukemia Cells

Terrance A. Stadheim; Nanjoo Suh; Neema Ganju; Michael B. Sporn; Alan Eastman

Tumor necrosis factor (TNF) is a potent activator of the nuclear factor-κB (NF-κB) pathway that leads to up-regulation of anti-apoptotic proteins. Hence, TNF induces apoptosis in the presence of inhibitors of protein or RNA synthesis. We report that a novel triterpenoid, 2-cyano-3,12-dioxooleana-1,9,-dien-28-oic acid (CDDO) inhibits NF-κB-mediated gene expression at a step after translocation of activated NF-κB to the nucleus. This effect appears specific for the NF-κB pathway as CDDO does not inhibit gene expression induced by the phorbol ester 12-0-tetradecanoylphorbol-13-acetate (TPA). CDDO in combination with TNF caused a dramatic increase in apoptosis in ML-1 leukemia cells that was associated with activation of caspase-8, cleavage of Bid, translocation of Bax, cytochrome crelease, and caspase-3 activation. Experiments with caspase inhibitors demonstrated that caspase-8 was an initiator of this pathway. TNF also induced a transient activation of c-Jun N-terminal kinase (JNK), which upon addition of CDDO was converted to a sustained activation. The activation of JNK was also dependent on caspase-8. Sustained activation of JNK is frequently pro-apoptotic, yet inhibition of JNK did not prevent Bax translocation or cytochromec release, demonstrating its lack of involvement in CDDO/TNF-induced apoptosis. Apoptosis was acutely induced by CDDO/TNF in every leukemia cell line tested including those that overexpress Bcl-xL, suggesting that the mitochondrial pathway is not required for apoptosis by this combination. These results suggest that the apoptotic potency of the CDDO/TNF combination occurs through selective inhibition of NF-κB-dependent anti-apoptotic proteins, bypassing potential mitochondrial resistance mechanisms, and thus may provide a basis for the development of novel approaches to the treatment of leukemia.


mAbs | 2011

Glycoengineered Pichia produced anti-HER2 is comparable to trastuzumab in preclinical study.

Ningyan Zhang; Liming Liu; Calin Dan Dumitru; Nga Rewa Houston Cummings; Michael Cukan; Youwei Jiang; Yuan Li; Fang Li; Teresa I. Mitchell; Muralidhar R. Mallem; Yangsi Ou; Rohan Patel; Kim Vo; Hui Wang; Irina Burnina; Byung-Kwon Choi; Hans E. Huber; Terrance A. Stadheim; Dongxing Zha

Mammalian cell culture systems are used predominantly for the production of therapeutic monoclonal antibody (mAb) products. A number of alternative platforms, such as Pichia engineered with a humanized N-linked glycosylation pathway, have recently been developed for the production of mAbs. The glycosylation profiles of mAbs produced in glycoengineered Pichia are similar to those of mAbs produced in mammalian systems. This report presents for the first time the comprehensive characterization of an anti-human epidermal growth factor receptor 2 (HER2) mAb produced in a glycoengineered Pichia, and a study comparing the anti-HER2 from Pichia, which had an amino acid sequence identical to trastuzumab, with trastuzumab. The comparative study covered a full spectrum of preclinical evaluation, including bioanalytical characterization, in vitro biological functions, in vivo anti-tumor efficacy and pharmacokinetics in both mice and non-human primates. Cell signaling and proliferation assays showed that anti-HER2 from Pichia had antagonist activities comparable to trastuzumab. However, Pichia–produced material showed a 5-fold increase in binding affinity to FcγIIIA and significantly enhanced antibody dependant cell-mediated cytotoxicity (ADCC) activity, presumably due to the lack of fucose on N-glycans. In a breast cancer xenograft mouse model, anti-HER2 was comparable to trastuzumab in tumor growth inhibition. Furthermore, comparable pharmacokinetic profiles were observed for anti-HER2 and trastuzumab in both mice and cynomolgus monkeys. We conclude that glycoengineered Pichia provides an alternative production platform for therapeutic mAbs and may be of particular interest for production of antibodies for which ADCC is part of the clinical mechanism of action.


PLOS ONE | 2012

Systematic Single-Cell Analysis of Pichia pastoris Reveals Secretory Capacity Limits Productivity

Kerry Routenberg Love; Timothy J. Politano; Vasiliki Panagiotou; Bo Jiang; Terrance A. Stadheim; J. Christopher Love

Biopharmaceuticals represent the fastest growing sector of the global pharmaceutical industry. Cost-efficient production of these biologic drugs requires a robust host organism for generating high titers of protein during fermentation. Understanding key cellular processes that limit protein production and secretion is, therefore, essential for rational strain engineering. Here, with single-cell resolution, we systematically analysed the productivity of a series of Pichia pastoris strains that produce different proteins both constitutively and inducibly. We characterized each strain by qPCR, RT-qPCR, microengraving, and imaging cytometry. We then developed a simple mathematical model describing the flux of folded protein through the ER. This combination of single-cell measurements and computational modelling shows that protein trafficking through the secretory machinery is often the rate-limiting step in single-cell production, and strategies to enhance the overall capacity of protein secretion within hosts for the production of heterologous proteins may improve productivity.


Glycoconjugate Journal | 2008

Recombinant human lactoferrin expressed in glycoengineered Pichia pastoris: effect of terminal N-acetylneuraminic acid on in vitro secondary humoral immune response

Byung-Kwon Choi; Jeffrey K. Actor; Sandra Rios; Marc d'Anjou; Terrance A. Stadheim; Shannon Warburton; Erin Giaccone; Michael Cukan; Huijuan Li; Angela Kull; Nathan Sharkey; Paul Gollnick; Maja Kocięba; Jolanta Artym; Michał Zimecki; Marian L. Kruzel; Stefan Wildt

Traditional production of therapeutic glycoproteins relies on mammalian cell culture technology. Glycoproteins produced by mammalian cells invariably display N-glycan heterogeneity resulting in a mixture of glycoforms the composition of which varies from production batch to production batch. However, extent and type of N-glycosylation has a profound impact on the therapeutic properties of many commercially relevant therapeutic proteins making control of N-glycosylation an emerging field of high importance. We have employed a combinatorial library approach to generate glycoengineered Pichia pastoris strains capable of displaying defined human-like N-linked glycans at high uniformity. The availability of these strains allows us to elucidate the relationship between specific N-linked glycans and the function of glycoproteins. The aim of this study was to utilize this novel technology platform and produce two human-like N-linked glycoforms of recombinant human lactoferrin (rhLF), sialylated and non-sialylated, and to evaluate the effects of terminal N-glycan structures on in vitro secondary humoral immune responses. Lactoferrin is considered an important first line defense protein involved in protection against various microbial infections. Here, it is established that glycoengineered P. pastoris strains are bioprocess compatible. Analytical protein and glycan data are presented to demonstrate the capability of glycoengineered P. pastoris to produce fully humanized, active and immunologically compatible rhLF. In addition, the biological activity of the rhLF glycoforms produced was tested in vitro revealing the importance of N-acetylneuraminic (sialic) acid as a terminal sugar in propagation of proper immune responses.


Biotechnology and Bioengineering | 2010

Integrated single-cell analysis shows Pichia pastoris secretes protein stochastically

Kerry Routenberg Love; Vasiliki Panagiotou; Bo Jiang; Terrance A. Stadheim; J. Christopher Love

The production of heterologous proteins by secretion from cellular hosts is an important determinant for the cost of biotherapeutics. A single-cell analytical method called microengraving was used to examine the heterogeneity in secretion by the methylotrophic yeast Pichia pastoris. We show that constitutive secretion of a human Fc fragment by P. pastoris is not cell-cycle dependent, but rather fluctuates between states of high and low productivity in a stochastic manner.


Yeast | 2011

A combinatorial genetic library approach to target heterologous glycosylation enzymes to the endoplasmic reticulum or the Golgi apparatus of Pichia pastoris

Juergen Hermann Nett; Terrance A. Stadheim; Huijuan Li; Piotr Bobrowicz; Stephen R. Hamilton; Robert C. Davidson; Byung-Kwon Choi; Teresa I. Mitchell; Beata Bobrowicz; Alissa Rittenhour; Stefan Wildt; Tillman U. Gerngross

To humanize the glycosylation pathway in the yeast Pichia pastoris, we developed several combinatorial genetic libraries and used them to properly localize active eukaryotic mannosidases and sugar transferases. Here we report the details of the fusion of up to 66 N‐terminal targeting sequences of fungal type II membrane proteins to 33 catalytic domains of heterologous glycosylation enzymes. We show that while it is difficult to predict which leader/catalytic domain will result in the desired activity, analysis of the fusion protein libraries allows for the selection of the leader/catalytic domain combinations that function properly. This combinatorial approach, together with a high‐throughput screening protocol, has allowed us to humanize the yeast glycosylation pathway to secrete human glycoprotein with complex N‐glycosylation. Copyright


Journal of Biotechnology | 2012

Optimization of erythropoietin production with controlled glycosylation-PEGylated erythropoietin produced in glycoengineered Pichia pastoris

Juergen H. Nett; Sujatha Gomathinayagam; Stephen R. Hamilton; Bing Gong; Robert C. Davidson; Min Du; Daniel Hopkins; Teresa Mitchell; Muralidhar R. Mallem; Adam Nylen; Seemab S. Shaikh; Nathan Sharkey; Gavin C. Barnard; Victoria Copeland; Liming Liu; Raymond Evers; Yan Li; Peter M. Gray; Russell B. Lingham; Denise M. Visco; Gail Forrest; Julie A. DeMartino; Thomas O. Linden; Thomas I. Potgieter; Stefan Wildt; Terrance A. Stadheim; Marc d’Anjou; Huijuan Li; Natarajan Sethuraman

Pichia pastoris is a methylotropic yeast that has gained great importance as an organism for protein expression in recent years. Here, we report the expression of recombinant human erythropoietin (rhEPO) in glycoengineered P. pastoris. We show that glycosylation fidelity is maintained in fermentation volumes spanning six orders of magnitude and that the protein can be purified to high homogeneity. In order to increase the half-life of rhEPO, the purified protein was coupled to polyethylene glycol (PEG) and then compared to the currently marketed erythropoiesis stimulating agent, Aranesp(®) (darbepoetin). In in vitro cell proliferation assays the PEGylated protein was slightly, and the non-PEGylated protein was significantly more active than comparator. Pharmacodynamics as well as pharmacokinetic activity of PEGylated rhEPO in animals was comparable to that of Aranesp(®). Taken together, our results show that glycoengineered P. pastoris is a suitable production host for rhEPO, yielding an active biologic that is comparable to those produced in current mammalian host systems.

Collaboration


Dive into the Terrance A. Stadheim's collaboration.

Researchain Logo
Decentralizing Knowledge